軟考輔導(dǎo)數(shù)據(jù)結(jié)構(gòu)與算法_第1頁(yè)
軟考輔導(dǎo)數(shù)據(jù)結(jié)構(gòu)與算法_第2頁(yè)
軟考輔導(dǎo)數(shù)據(jù)結(jié)構(gòu)與算法_第3頁(yè)
軟考輔導(dǎo)數(shù)據(jù)結(jié)構(gòu)與算法_第4頁(yè)
軟考輔導(dǎo)數(shù)據(jù)結(jié)構(gòu)與算法_第5頁(yè)
已閱讀5頁(yè),還剩104頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)據(jù)結(jié)構(gòu)與算法軟考輔導(dǎo)數(shù)據(jù)結(jié)構(gòu)與算法概述算法知識(shí)點(diǎn)復(fù)習(xí)模擬練習(xí)考點(diǎn)分析主要內(nèi)容數(shù)據(jù)結(jié)構(gòu)知識(shí)點(diǎn)復(fù)習(xí)考點(diǎn)分析數(shù)據(jù)結(jié)構(gòu)與算法基礎(chǔ)常用數(shù)據(jù)結(jié)構(gòu):57%數(shù)據(jù)結(jié)構(gòu)基礎(chǔ)與線性表:7樹(shù)和二叉樹(shù):14圖:11算法基礎(chǔ):43%算法的描述與分析常用數(shù)值計(jì)算算法常用非數(shù)值計(jì)算算法排序算法查找算法數(shù)據(jù)結(jié)構(gòu)與算法概述數(shù)據(jù)結(jié)構(gòu)的概念:數(shù)據(jù)結(jié)構(gòu)研究的內(nèi)容:數(shù)據(jù)結(jié)構(gòu)的主要邏輯結(jié)構(gòu)數(shù)據(jù)結(jié)構(gòu):(DataStructure)數(shù)據(jù)結(jié)構(gòu)是帶“結(jié)構(gòu)”的數(shù)據(jù)元素的集合?!敖Y(jié)構(gòu)”即指數(shù)據(jù)元素之間存在的聯(lián)系。所以數(shù)據(jù)結(jié)構(gòu)又可以定義為有聯(lián)系的數(shù)據(jù)元素的集合。數(shù)據(jù)結(jié)構(gòu)主要研究幾種常用的數(shù)據(jù)結(jié)構(gòu)的邏輯特點(diǎn)、存儲(chǔ)結(jié)構(gòu)的實(shí)現(xiàn)、常用的操作的具體實(shí)現(xiàn)方法、各種結(jié)構(gòu)的具體應(yīng)用等問(wèn)題。線性結(jié)構(gòu):線性表、棧、隊(duì)列、數(shù)組、廣義表非線性結(jié)構(gòu):樹(shù)、圖常用的排序算法、查找算法、數(shù)值計(jì)算、字符串處理、數(shù)據(jù)壓縮算法、遞歸算法、圖的相關(guān)算法算法第一部分線性表分值:0~1分(每年)分?jǐn)?shù)比重:0%~10%重要知識(shí)點(diǎn):

1、順序表的結(jié)構(gòu)特點(diǎn)

2、單鏈表的結(jié)構(gòu)特點(diǎn)

3、雙向鏈表的插入刪除

4、循環(huán)鏈表的結(jié)構(gòu)特點(diǎn)第一部分線性表順序表特點(diǎn):利用物理存儲(chǔ)位置的相鄰關(guān)系反應(yīng)元素之間的次序關(guān)系優(yōu)點(diǎn):

1.無(wú)需為表示結(jié)點(diǎn)間的邏輯關(guān)系而增加額外的存儲(chǔ)空間;

2.可方便地隨機(jī)存取表中的任一元素。缺點(diǎn):

1.插入或刪除運(yùn)算不方便,需要移動(dòng)大量的結(jié)點(diǎn),其效率較低;

2.需要預(yù)先確定順序表的最大表長(zhǎng),由于順序表要求占用連續(xù)的存儲(chǔ)空間,存儲(chǔ)分配只能預(yù)先進(jìn)行靜態(tài)分配。因此當(dāng)表長(zhǎng)變化較大時(shí),難以確定合適的存儲(chǔ)規(guī)模。第一部分線性表單鏈表lista1d1a2d2a3d3a4d4∧物理狀態(tài)邏輯狀態(tài)d2d1d3d4a2a3a4a1d3d4∧d2…優(yōu)點(diǎn):1.鏈表動(dòng)態(tài)存儲(chǔ)分配的結(jié)構(gòu),能有效利用存儲(chǔ)空間;。

2.插入或刪除時(shí)只需要修改指針,而不需要進(jìn)行大量元素的移動(dòng)。缺點(diǎn):

1.必需為表示結(jié)點(diǎn)間的邏輯關(guān)系而增加額外的存儲(chǔ)空間;

2.不能隨機(jī)存取、訪問(wèn)數(shù)據(jù)元素。特點(diǎn):?jiǎn)捂湵碇羞壿嬌舷噜彽臄?shù)據(jù)元素在物理上不一定相鄰。數(shù)據(jù)元素之間的邏輯關(guān)系通過(guò)鏈指針間接地反映出來(lái)。第一部分線性表雙向鏈表特點(diǎn):雙向鏈表中查找某結(jié)點(diǎn)的直接前驅(qū)結(jié)點(diǎn)和直接后繼結(jié)點(diǎn)的運(yùn)算的時(shí)間復(fù)雜度均為O(1)

es①②③④

bp

a

…①s->prior=p->prior;②p->prior->next=s;③s->next=p;④p->prior=s;①p->prior->next=p->next;②p->next->prior=p->prior;

a

b

c②①……插入:刪除:p第一部分線性表循環(huán)鏈表循環(huán)鏈表(CircularLinkedList):鏈表中最后一個(gè)結(jié)點(diǎn)的指針域指向整個(gè)鏈表的頭結(jié)點(diǎn),從而使鏈表形成一個(gè)首尾相接的環(huán)形鏈表。特點(diǎn):從鏈表尾部到鏈表頭部比較方便。從表中任一結(jié)點(diǎn)出發(fā)均可找到表中其它結(jié)點(diǎn)。判空:表尾判斷:La1…LanL->next==L;p->next==L;reara1aiai-1…an…采用尾指針的循環(huán)單鏈表開(kāi)始結(jié)點(diǎn)的存儲(chǔ)位置:rear->next->next終端結(jié)點(diǎn)的存儲(chǔ)位置:rear第一部分線性表真題200505●循環(huán)鏈表的主要優(yōu)點(diǎn)是(38)(38)A.不再需要頭指針了

B.已知某個(gè)結(jié)點(diǎn)的位置后,能很容易找到它的直接前驅(qū)結(jié)點(diǎn)

C.在進(jìn)行刪除操作后,能保證鏈表不斷開(kāi)D.從表中任一結(jié)點(diǎn)出發(fā)都能遍歷整個(gè)鏈200605●給定—個(gè)有n個(gè)元素的有序線性表。若采用順序存儲(chǔ)結(jié)構(gòu),則在等概率前提下,刪除其中的一個(gè)元素平均需要移動(dòng)(54)個(gè)元素。(54)A.(n+1)/2

B.n/2

C.(n-1)/2

D.1第一部分線性表真題200611●某雙向鏈表中的結(jié)點(diǎn)如下圖所示,刪除t所指結(jié)點(diǎn)的操作為(54)。(54)A.t->prior->next=t->next;t->next->prior=t->prior;B.t->prior->prior=t->prior;t->next->next=t->next;C.t->prior->next=t->prior;t->next->prior=t->next;D.t->prior->prior=t->next;t->next->prior=t->prior;第一部分線性表真題200711●對(duì)于n(n≥0)個(gè)元素構(gòu)成的線性序列L,在(60)時(shí)適合采用鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu)。(60)A.需要頻繁修改L中元素的值B.需要頻繁地對(duì)L進(jìn)行隨機(jī)查找C.需要頻繁地對(duì)L進(jìn)行刪除和插入操作D.要求L存儲(chǔ)密度高第一部分線性表真題2009.11●單向鏈表中往往含有一個(gè)頭結(jié)點(diǎn),該結(jié)點(diǎn)不存儲(chǔ)數(shù)據(jù)元素,一般令鏈表的頭指針指向該結(jié)點(diǎn),而該結(jié)點(diǎn)指針域的值為第一個(gè)元素結(jié)點(diǎn)的指針。以下關(guān)于單鏈表頭結(jié)點(diǎn)的敘述中,錯(cuò)誤的是(60)。(60)A.若在頭結(jié)點(diǎn)中存入鏈表長(zhǎng)度值,則求鏈表長(zhǎng)度運(yùn)算的時(shí)間復(fù)雜度為O(1)B.在鏈表的任何一個(gè)元素前后進(jìn)行插入和刪除操作可用一致的方式進(jìn)行處理C.加入頭結(jié)點(diǎn)后,代表鏈表的頭指針不因?yàn)殒湵頌榭斩淖僁.加入頭結(jié)點(diǎn)后,在鏈表中進(jìn)行查找運(yùn)算的時(shí)間復(fù)雜度為O(1)分值:0~1分(每年)分?jǐn)?shù)比重:0%~10%重要知識(shí)點(diǎn):

1、棧的結(jié)構(gòu)特點(diǎn)

2、隊(duì)列的結(jié)構(gòu)特點(diǎn)

3、雙端隊(duì)列與循環(huán)隊(duì)列第二部分棧、隊(duì)列棧特點(diǎn):后進(jìn)先出的線性表雙向棧:使兩個(gè)棧共享一維數(shù)組S[MAXNUM],利用棧的“棧底位置不變,棧頂位置動(dòng)態(tài)變化”的特性,將兩個(gè)棧底分別設(shè)為0和MAXNUM-1,而它們的棧頂都往中間方向延伸的棧稱為雙向棧。在一端進(jìn)行插入和刪除操作的線性表。棧頂:允許插入和刪除的一端。棧底:不允許插入和刪除的一端。a1a2a3an-1an…入棧出棧棧頂元素棧底元素

概念:自由區(qū)0MAXNUM-1lefttoprighttop第二部分棧、隊(duì)列隊(duì)列特點(diǎn):先進(jìn)先出的線性表隊(duì)列是只能在表的一端進(jìn)行插入操作,在表的另一端進(jìn)行刪除操作的線性表。隊(duì)尾(rear):允許插入的一端叫做隊(duì)尾。隊(duì)頭(front):允許刪除的一端叫做隊(duì)頭。a1a2a3…an-1an入隊(duì)列出隊(duì)列隊(duì)尾元素隊(duì)頭元素概念:第二部分棧、隊(duì)列循環(huán)隊(duì)列特點(diǎn):

1、循環(huán)隊(duì)列只針對(duì)順序隊(duì)列而言2、入隊(duì)rear=(rear+1)%MAXSIZE;3、出隊(duì)front=(front+1)%MAXSIZE;

4、判隊(duì)滿:front==(rear+1)%MAXSIZE5、判隊(duì)空:rear==front6、元素個(gè)數(shù):(rear-front+MAXSIZE)%MAXSIZE(采用少用一個(gè)存儲(chǔ)單元的方法區(qū)分隊(duì)空和隊(duì)滿)7012a2front345a6a5a4a3rear6把順序隊(duì)列所使用的存儲(chǔ)空間臆造成一個(gè)邏輯上首尾相連的循環(huán)隊(duì)列。第二部分棧、隊(duì)列雙端隊(duì)列分類:

1、輸出受限的雙端隊(duì)列(即一個(gè)端點(diǎn)允許插入和刪除,另一個(gè)端點(diǎn)只允許插入);2、輸入受限的雙端隊(duì)列(即一個(gè)端點(diǎn)允許插入和刪除,另一個(gè)端點(diǎn)只允許刪除)。3、限定雙端隊(duì)列從某個(gè)端點(diǎn)插入的元素只能從該端點(diǎn)刪除,則雙端隊(duì)列就蛻變?yōu)閮蓚€(gè)棧底相鄰接的棧了。想象自己在郵局里排隊(duì),當(dāng)最終輪到自己時(shí),郵局工作人員要求填寫(xiě)一張表格,于是自己站在旁邊填表,工作人員為隊(duì)列中下一個(gè)人服務(wù).在填表后,工作人員將繼續(xù)為自己服務(wù),實(shí)質(zhì)上自己又回到了隊(duì)列的前端.有時(shí)可能會(huì)排在一個(gè)隊(duì)列后面,隨即因嫌隊(duì)伍太長(zhǎng)而離去.a1a2aia0an-1端1端2第二部分棧、隊(duì)列真題200705●輸入受限的雙端隊(duì)列是指元素只能從隊(duì)列的一端輸入、但可以從隊(duì)列的兩端輸出,如下圖所示。若有8、1、4、2依次進(jìn)入輸入受限的雙端隊(duì)列,則得不到輸出序列(57)。(57)A.2、8、1、4

B.1、4、8、2

C.4、2、1、8

D.2、1、4、8第二部分棧、隊(duì)列真題200711●設(shè)棧S和隊(duì)列Q的初始狀態(tài)為空,元素按照a、b、c、d、e的次序進(jìn)入棧S,當(dāng)一個(gè)元素從棧中出來(lái)后立即進(jìn)入隊(duì)列Q。若隊(duì)列的輸出元素序列是c、d、b、a、e,則元素的出棧順序是(58),棧S的容量至少為(59)。(58)A.a、b、c、d、eB.e、d、c、b、aC.c、d、b、a、eD.e、a、b、d、c(59)A.2B.3C.4D.5第二部分棧、隊(duì)列真題200905●下面關(guān)于棧和隊(duì)列的敘述,錯(cuò)誤的是(60)。(60)A.棧和隊(duì)列都是操作受限的線性表

B.隊(duì)列采用單循環(huán)鏈表存儲(chǔ)時(shí),只需設(shè)置隊(duì)尾指針就可使入隊(duì)和出隊(duì)操作的時(shí)間復(fù)雜度都為O(1)C.若隊(duì)列的數(shù)據(jù)規(guī)模n可以確定,則采用順序存儲(chǔ)結(jié)構(gòu)比鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu)效率更高

D.利用兩個(gè)??梢阅M一個(gè)隊(duì)列的操作,反之亦可第二部分棧、隊(duì)列真題200911●對(duì)于長(zhǎng)度為m(m>1)的指定序列,通過(guò)初始為空的一個(gè)棧、一個(gè)隊(duì)列后,錯(cuò)誤的敘述是(61)。(61)A.若入棧和入隊(duì)的序列相同,則出棧序列和出隊(duì)序列可能相同B.若入棧和入隊(duì)的序列相同,則出棧序列和出隊(duì)序列可以互為逆序C.入隊(duì)序列與出隊(duì)序列關(guān)系為1:1,而入棧序列與出棧序列關(guān)系是l:n(n≥1)D.入棧序列與出棧序列關(guān)系為1:1,而入隊(duì)序列與出隊(duì)序列關(guān)系是l:n(n≥1)第二部分棧、隊(duì)列真題201011●設(shè)循環(huán)隊(duì)列Q的定義中有rear和len兩個(gè)域變量,其中rear表示隊(duì)尾元素的指針,len表示隊(duì)列的長(zhǎng)度,如下圖所示(隊(duì)列長(zhǎng)度為3,隊(duì)頭元素為e)。設(shè)隊(duì)列的存儲(chǔ)空間容量為M,則隊(duì)頭元素的指針為(57)。(57)A.(Q.rear+Q.len-1)B.(Q.rear+Q.len-1+M)%MC.(Q.rear-Q.len+1)D.(Q.rear-Q.len+1+M)%M第二部分棧、隊(duì)列分值:0~1分(每年)分?jǐn)?shù)比重:0%~10%重要知識(shí)點(diǎn):

1、數(shù)組的地址計(jì)算

2、數(shù)組的壓縮存儲(chǔ)

3、廣義表的表示

4、廣義表的表頭、表尾第三部分?jǐn)?shù)組與廣義表

數(shù)組特點(diǎn):

1.數(shù)組中的數(shù)據(jù)元素具有相同的數(shù)據(jù)類型。

2.數(shù)組是一種隨機(jī)存取結(jié)構(gòu),只要給定一組下標(biāo),就可以訪問(wèn)與其對(duì)應(yīng)的數(shù)組元素。

3.數(shù)組中的元素個(gè)數(shù)是固定的。基本操作——存取、修改對(duì)于數(shù)組A,一旦給定其維數(shù)n及各維長(zhǎng)度bi(1≤i≤n),則該數(shù)組中元素的個(gè)數(shù)和元素之間的關(guān)系就不再發(fā)生變化了,既不可以對(duì)數(shù)組做插入和刪除操作,也不涉及移動(dòng)元素操作。第三部分?jǐn)?shù)組與廣義表

多維數(shù)組和廣義表是對(duì)線性表的擴(kuò)展——線性表中的數(shù)據(jù)元素本身又是一個(gè)多層次的線性表。數(shù)組的地址計(jì)算第三部分?jǐn)?shù)組與廣義表

Loc[aij]

=

Loc[a00]+(

n

i

+

j

)

size

a00a02a03a0j…a0,n-1

a10a11a12a1j…a1,n-1a20a21a22a2j…a2,n-1A[m][n]=…………ai,0ai,1……aij……am-1,0am-1,1am-1,2……am-1,n-1Loc[aij]=Loc[a00]+(mj+i)size行序?yàn)橹餍颍毫行驗(yàn)橹餍颍篴11a21a22......aij......ann

Loc[i

,

j]=123......n*(n+1)/2

a11

a12a13……a1n

a21a22a23……a2n

a31a32a33

……a3nA=…………

an1an2an3……annLoc[i,j]={Loc[1,1]+i(i-1)/2+j-1當(dāng)i≥j時(shí)Loc[1,1]+j(j-1)/2+i-1當(dāng)i<j時(shí)

對(duì)于對(duì)稱矩陣,因其元素滿足aij=aji,我們可以為每一對(duì)相等的元素分配一個(gè)存儲(chǔ)空間,即只存下三角(或上三角)矩陣,從而將n2個(gè)元素壓縮到n(n+1)/2個(gè)空間中。一維數(shù)組A中對(duì)應(yīng)的下標(biāo)為:數(shù)組的壓縮存儲(chǔ)第三部分?jǐn)?shù)組與廣義表

對(duì)稱矩陣:aij=aji帶狀矩陣:在矩陣A中,所有的非零元素都集中在以主對(duì)角線為中心的帶狀區(qū)域中。最常見(jiàn)的是三對(duì)角帶狀矩陣。特點(diǎn):

i=1,j=1,2;當(dāng)

1<i<n,j=i-1,i,i+1i=n,j=n-1,n;時(shí),即|i-j|≤1,aij非零,其他元素均為零。

An×n=a11a12a21a22a23a32a33a34a43a44a45

………ann-1ann0元素0元素?cái)?shù)組的壓縮存儲(chǔ)第三部分?jǐn)?shù)組與廣義表

1.確定存儲(chǔ)該矩陣所需的一維向量空間的大?。喝龑?duì)角帶狀矩陣中除第一行和最后一行只有兩個(gè)元素外,其余各行均有3個(gè)非零元素。由此可得到一維向量所需的空間大小為:3n-2。2.確定非零元素在一維數(shù)組空間中的位置:Loc[i,j]=Loc[1,1]+3×(i-1)-1+j-i+1=Loc[1,1]+2(i-1)+j-13.矩陣中元素aij

在一維數(shù)組A中對(duì)應(yīng)的下標(biāo)為:

k=2(i-1)+j-1(1≤i,j≤n,|i-j|≤1)j-i-101aij在第i行中的位置123第i行中aij前面非零元素個(gè)數(shù)012數(shù)組的壓縮存儲(chǔ)第三部分?jǐn)?shù)組與廣義表

rowcolvalue該非零元素所在的行號(hào)該非零元素所在的列號(hào)該非零元素的值數(shù)組的壓縮存儲(chǔ)第三部分?jǐn)?shù)組與廣義表

稀疏矩陣:三元組存儲(chǔ)十字鏈表M6×7=012900000000000-3000014000240000018000001500-7000121213931-3361452184324611564-7data[0]data[1]data[2]data[3]data[4]data[5]data[6]data[7]data[8]數(shù)組的壓縮存儲(chǔ)第三部分?jǐn)?shù)組與廣義表

稀疏矩陣:十字鏈表-30050-100800711314522-138^^^^^347^^11、A=()2、B=(e)3、C=(a,(b,c,d))4、D=(A,A,())5、E=(A,B,C)6、F=(a,F)表示廣義表A是一個(gè)空表,其長(zhǎng)度為0表示廣義表B長(zhǎng)度為1,只有一個(gè)原子項(xiàng)e表示廣義表C長(zhǎng)度為2,兩個(gè)元素分別為原子項(xiàng)a和子表(b,c,d)。表示廣義表D長(zhǎng)度為3,三個(gè)元素都是廣義表,分別為A、A和()。表示廣義表E長(zhǎng)度為3,三個(gè)元素A、B、C都是廣義表,代入值以后E=((),(e),(a,(b,c,d)))。表示廣義表F長(zhǎng)度為2,兩個(gè)元素分別是原子項(xiàng)a和子表F。這是一個(gè)遞歸表,相當(dāng)于無(wú)窮廣義表F=(a,F)=(a,(a,(a,…,)))。廣義表的表示第三部分?jǐn)?shù)組與廣義表

廣義表的長(zhǎng)度定義為最外層包含元素個(gè)數(shù)。廣義表的深度定義為所含括弧的重?cái)?shù);“原子結(jié)點(diǎn)”的深度為0;“空表”的深度為1。廣義表的表頭、表尾第三部分?jǐn)?shù)組與廣義表

任何一個(gè)非空廣義表GL=(d1,d2,…,dn)均可分解為

表頭Head(GL)=d1

和表尾Tail(GL)=(d2,…,dn)例如:D=(E,F)=((a,(b,c)),F(xiàn))Head(D)=ETail(D)=(F)Head(E)=aTail(E)=((b,c))Head(((b,c)))=(b,c)Tail(((b,c)))=()Head((b,c))=bTail((b,c))=(c)Head((c))=cTail((c))=()真題200511●簡(jiǎn)單無(wú)向圖的鄰接矩陣是對(duì)稱的,可以對(duì)其進(jìn)行壓縮存儲(chǔ)。若無(wú)向圖G有n個(gè)節(jié)點(diǎn)。若無(wú)向圖G有n個(gè)節(jié)點(diǎn),其鄰接矩陣為A[1..n,1..n],且壓縮存儲(chǔ)在B[1..k]中,則k的值至少為(40)。若按行壓縮存儲(chǔ)對(duì)稱矩陣的上三角元素,則當(dāng)n等于10時(shí),邊(V6,V3)的信息存儲(chǔ)在B[(41)]中。(40)A.n(n+1)/2B.n2/2C.(n-1)(n+1)/2D.n(n-1)/2(41)A.18B.19C.20D.21第三部分?jǐn)?shù)組與廣義表

真題201005第三部分?jǐn)?shù)組與廣義表

真題200905●設(shè)L為廣義表,將head(L)定義為取非空廣義表的第一個(gè)元素,tail(L)定義為取非空廣義表除第一個(gè)元素外剩余元素構(gòu)成的廣義表。若廣義表L=((x,y,z),a,(u,t,w)),則從L中取出原子項(xiàng)y的運(yùn)算是(62)(62)A.head(tail(tail(L)))B.tail(head(head(L)))C.head(tail(head(L)))D.tail(tail(head(L)))第三部分?jǐn)?shù)組與廣義表

分值:1~17分(每年)分?jǐn)?shù)比重:2%~20%重要知識(shí)點(diǎn):

1、樹(shù)和二叉樹(shù)的定義

2、二叉樹(shù)的重要性質(zhì)

3、二叉樹(shù)的遍歷、線索二叉樹(shù)

4、樹(shù)與二叉樹(shù)的轉(zhuǎn)換

5、二叉樹(shù)的應(yīng)用——哈夫曼樹(shù)第四部分樹(shù)與二叉樹(shù)

樹(shù)和二叉樹(shù)的定義樹(shù)的概念和邏輯特點(diǎn):

1、有且僅有一個(gè)結(jié)點(diǎn)沒(méi)有前驅(qū)結(jié)點(diǎn),該結(jié)點(diǎn)為樹(shù)的根結(jié)點(diǎn)。

2、除了根結(jié)點(diǎn)外,每個(gè)結(jié)點(diǎn)有且僅有一個(gè)直接前驅(qū)結(jié)點(diǎn)。

3、包括根結(jié)點(diǎn)在內(nèi),每個(gè)結(jié)點(diǎn)可以有多個(gè)后繼結(jié)點(diǎn)。二叉樹(shù)的概念和邏輯特點(diǎn)

1、每個(gè)結(jié)點(diǎn)的度都不大于2;2、每個(gè)結(jié)點(diǎn)的孩子結(jié)點(diǎn)次序不能任意顛倒。第四部分樹(shù)與二叉樹(shù)

相關(guān)術(shù)語(yǔ):結(jié)點(diǎn)、結(jié)點(diǎn)的度、葉子結(jié)點(diǎn)、分支結(jié)點(diǎn)、結(jié)點(diǎn)的層次、結(jié)點(diǎn)的層序編號(hào)、樹(shù)的度、樹(shù)的高度(深度)、雙親結(jié)點(diǎn)、孩子結(jié)點(diǎn)、兄弟結(jié)點(diǎn)、堂兄弟結(jié)點(diǎn)、子孫結(jié)點(diǎn)、祖先結(jié)點(diǎn)。完全二叉樹(shù)、滿二叉樹(shù)。二叉樹(shù)的重要性質(zhì)性質(zhì)1:在二叉樹(shù)的第i層上至多有2i-1個(gè)結(jié)點(diǎn)(i≥1)。性質(zhì)2:深度為k的二叉樹(shù)至多有2k-1個(gè)結(jié)點(diǎn)(k≥1)。性質(zhì)3:對(duì)任意一棵二叉樹(shù)T,若終端結(jié)點(diǎn)數(shù)為n0,而其度數(shù)為2的結(jié)點(diǎn)數(shù)為n2,則n0=n2+1。性質(zhì)4:具有n個(gè)結(jié)點(diǎn)的完全二叉樹(shù)深度為log2n+1

。性質(zhì)5:對(duì)于具有n個(gè)結(jié)點(diǎn)的完全二叉樹(shù),如果按照從上到下和從左到右的順序?qū)Χ鏄?shù)中的所有結(jié)點(diǎn)從1開(kāi)始順序編號(hào),則對(duì)于任意的序號(hào)為i的結(jié)點(diǎn)有:(1)若i=1,則i無(wú)雙親結(jié)點(diǎn)若i>1,則i的雙親結(jié)點(diǎn)為i/2

(2)若2*i>n,則i無(wú)左孩子若2*i≤n,則i結(jié)點(diǎn)的左孩子結(jié)點(diǎn)為2*i(3)若2*i+1>n,則i無(wú)右孩子若2*i+1≤n,則i的右孩子結(jié)點(diǎn)為2*i+1第四部分樹(shù)與二叉樹(shù)

二叉樹(shù)的遍歷第四部分樹(shù)與二叉樹(shù)

ABCDKFGIJEH前序遍歷序列:

A,B,D,K,J,G,C,F,I,E,H中序遍歷序列:

D,B,G,J,K,A,F,I,E,C,H后序遍歷序列:

D,G,J,K,B,E,I,F,H,C,A按層次遍歷序列:

A,B,C,D,K,F,H,J,I,G,E例:已知結(jié)點(diǎn)的先序序列和中序序列先序序列:ABDEJCFIG中序序列:DBJEAFICG

則可按上述分解求得整棵二叉樹(shù)。

ADCIFGJBE第四部分樹(shù)與二叉樹(shù)

例:已知結(jié)點(diǎn)的中序序列和后序序列中序序列:ABCEFGHD后序序列:ABFHGEDC

則可按上述分解求得整棵二叉樹(shù)。CADGEHFB線索二叉樹(shù)第四部分樹(shù)與二叉樹(shù)

一.什么是線索二叉樹(shù)二.線索二叉樹(shù)的構(gòu)造

利用二叉鏈表中空的指針域指出結(jié)點(diǎn)在遍歷序列中的直接前驅(qū)和直接后繼;這些指向前驅(qū)和后繼的指針?lè)Q為線索,加了線索的二叉樹(shù)稱為線索二叉樹(shù).利用結(jié)點(diǎn)的空的左指針域存放該結(jié)點(diǎn)的直接前驅(qū)的地址,空的右指針域存放該結(jié)點(diǎn)直接后繼的地址;而非空的指針域仍然存放結(jié)點(diǎn)的左孩子或右孩子的地址.注:每棵二叉樹(shù)都可以構(gòu)造先序、中序和后序三種線索二叉樹(shù)。樹(shù)、森林與二叉樹(shù)的轉(zhuǎn)換第四部分樹(shù)與二叉樹(shù)

樹(shù)轉(zhuǎn)換成二叉樹(shù):

1、樹(shù)中所有相鄰兄弟之間加一條連線。2、對(duì)樹(shù)中的每個(gè)結(jié)點(diǎn),只保留其與第一個(gè)孩子結(jié)點(diǎn)之間的連線,刪去其與其它孩子結(jié)點(diǎn)之間的連線。森林轉(zhuǎn)換為二叉樹(shù)的方法為:1、將森林中的每棵樹(shù)轉(zhuǎn)換成相應(yīng)的二叉樹(shù)。2、第一棵二叉樹(shù)不動(dòng),從第二棵二叉樹(shù)開(kāi)始,依次把后一棵二叉樹(shù)的根結(jié)點(diǎn)作為前一棵二叉樹(shù)根結(jié)點(diǎn)的右孩子,當(dāng)所有二叉樹(shù)連在一起后,即為由森林轉(zhuǎn)換得到的二叉樹(shù)。ABECDFGHABCDEFIJGH帶權(quán)路徑長(zhǎng)度:

設(shè)二叉樹(shù)有n個(gè)帶權(quán)值的葉子結(jié)點(diǎn),定義從二叉樹(shù)的根結(jié)點(diǎn)到二叉樹(shù)中所有葉子結(jié)點(diǎn)的路徑長(zhǎng)度li與相應(yīng)葉子結(jié)點(diǎn)權(quán)值wi的乘積之和稱作該二叉樹(shù)的帶權(quán)路徑長(zhǎng)度。TWPL(T)=72+52+23+43+92=6075249ACBIGFDEHWPL=哈夫曼樹(shù)第四部分樹(shù)與二叉樹(shù)

52310515782511110000(011)(010)(10)(11)(00)字符:staec

字符出現(xiàn)的次數(shù):38752c:010s:011e:00a:10t:11哈夫曼編碼第四部分樹(shù)與二叉樹(shù)

真題200505●表達(dá)式a*(b+c)-d的后綴表達(dá)形式為_(kāi)__(39)___。(39)A.abcd*+-B.abc+*d-C.abc*+d-D.-+*abcd●若二叉樹(shù)的先序遍歷序列為ABDECF,中序遍歷序列DBEAFC,則其后序遍歷序列為_(kāi)_(40)___。(40)A.DEBAFCB.DEFBCAC.DEBCFAD.DEBFCA第四部分樹(shù)與二叉樹(shù)

真題201005●若用n個(gè)權(quán)值構(gòu)造一棵最優(yōu)二叉樹(shù)(哈夫曼樹(shù)),則該二叉樹(shù)的結(jié)點(diǎn)總數(shù)為_(kāi)__(59)___。(38)A.2nB.2n-1C.2n+1D.2n1●在二叉樹(shù)的順序存儲(chǔ)中,每個(gè)結(jié)點(diǎn)的存儲(chǔ)位置與其父結(jié)點(diǎn)、左右子樹(shù)結(jié)點(diǎn)的位置都存在一個(gè)簡(jiǎn)單的映射關(guān)系,因此可與三叉鏈表對(duì)應(yīng)。若某二叉樹(shù)共有n個(gè)結(jié)點(diǎn),采用三叉鏈表存儲(chǔ)時(shí),每個(gè)結(jié)點(diǎn)的數(shù)據(jù)域需要d個(gè)字節(jié),每個(gè)指針域占用4個(gè)字節(jié),若采用順序存儲(chǔ),則最后一個(gè)結(jié)點(diǎn)下標(biāo)為k(起始下標(biāo)為1),那么___(39)___時(shí)采用順序存儲(chǔ)更節(jié)省空間。(39)A.d<12n/(k-n)B.d>12n/(k-n)C.d<12n/(k+n)D.d>12n/(k+n)第四部分樹(shù)與二叉樹(shù)

真題200605●與逆波蘭式ab+-c*d-對(duì)應(yīng)的中綴表達(dá)式是(45)。(45)A.a(chǎn)-b-c*d

B.-(a+b)*c-d

C.-a+b*c-d

D.(a+b)*(-c-d)●為便于存儲(chǔ)和處理一般樹(shù)結(jié)構(gòu)形式的信息,常采用孩子ˉ兄弟表示法將其轉(zhuǎn)換成二叉樹(shù)(左子關(guān)系表示父子、右子關(guān)系表示兄弟),與下圖所示的樹(shù)對(duì)應(yīng)的二叉樹(shù)是(53)。(53)第四部分樹(shù)與二叉樹(shù)

真題200612●“X=(A+B)×(C-D/E)”的后綴式表示為(20)(20)A.XAB+CDE/-×=B.XAB+C-DE/×=C.XAB+CDE-/×=D.XAB+CD-E/×=200705●已知某二叉樹(shù)的中序序列為CBDAEFI、先序序列為ABCDEFI,則該二叉樹(shù)的高度為(58)。(58)A.2B.3C.4D.5第四部分樹(shù)與二叉樹(shù)

真題200705●由權(quán)值為29、12、15、6、23的五個(gè)葉子結(jié)點(diǎn)構(gòu)造的哈夫曼樹(shù)為(64),其帶權(quán)路徑長(zhǎng)度為(65)。第四部分樹(shù)與二叉樹(shù)

真題200805●若將某有序樹(shù)T轉(zhuǎn)換為二叉樹(shù)T1,則T中結(jié)點(diǎn)的后(根)序序列就是T1中結(jié)點(diǎn)的__(59)__遍歷序列。例如,下圖(a)所示的有序樹(shù)轉(zhuǎn)化為二叉樹(shù)后如圖(b)所示。(59)A.先序B.中序C.后序D.層序

第四部分樹(shù)與二叉樹(shù)

真題201011●下面關(guān)于哈夫曼樹(shù)的敘述中,正確的是(58)。(58)A.哈夫曼樹(shù)一定是完全二叉樹(shù)

B.哈夫曼樹(shù)一定是平衡二叉樹(shù)

C.哈夫曼樹(shù)中權(quán)值最小的兩個(gè)結(jié)點(diǎn)互為兄弟結(jié)點(diǎn)D.哈夫曼樹(shù)中左孩子結(jié)點(diǎn)小于父結(jié)點(diǎn)、右孩子結(jié)點(diǎn)大于父結(jié)點(diǎn)●已知一棵度為3的樹(shù)(一個(gè)結(jié)點(diǎn)的度是指其子樹(shù)的數(shù)目,樹(shù)的度是指該樹(shù)中所有結(jié)點(diǎn)的度的最大值)中有5個(gè)度為1的結(jié)點(diǎn),4個(gè)度為2的結(jié)點(diǎn),2個(gè)度為3的結(jié)點(diǎn),那么,該樹(shù)中的葉子結(jié)點(diǎn)數(shù)目為(61)。(61)A.10 B.9C.8D.7第四部分樹(shù)與二叉樹(shù)

真題200905●下面關(guān)于二叉樹(shù)的敘述,正確的是(61)。(61)A.完全二叉樹(shù)的高度h與其結(jié)點(diǎn)數(shù)n之間存在確定的關(guān)系B.在二叉樹(shù)的順序存儲(chǔ)和鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu)中,完全二叉樹(shù)更適合采用鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu)C.完全二叉樹(shù)中一定不存在度為1的結(jié)點(diǎn)D.完全二叉樹(shù)中必定有偶數(shù)個(gè)葉子結(jié)點(diǎn)201105●在(59)中,任意一個(gè)結(jié)點(diǎn)的左右字?jǐn)?shù)的高度之差的絕對(duì)值不超過(guò)1.(59)A.完全二叉樹(shù)B.二叉排序樹(shù)C.線索二叉樹(shù)D.最優(yōu)二叉樹(shù)第四部分樹(shù)與二叉樹(shù)

真題200911●已知一個(gè)二叉樹(shù)的先序遍歷序列為①、②、③、④、⑤,中序遍歷序列為②、①、④、③、⑤,則該二叉樹(shù)的后序遍歷序列為(57)。對(duì)于任意一棵二叉樹(shù),敘述錯(cuò)誤的是(58)。(57)A.②、③、①、⑤、④B.①、②、③、④、⑤C.②、④、⑤、③、①D.④、⑤、③、②、①(58)A.由其后序遍歷序列和中序遍歷序列可以構(gòu)造該二叉樹(shù)的先序遍歷序列B.由其先序遍歷序列和后序遍歷序列可以構(gòu)造該二叉樹(shù)的中序遍歷序列C.由其層序遍歷序列和中序遍歷序列可以構(gòu)造該二叉樹(shù)的先序遍歷序列D.由其層序遍歷序列和中序遍歷序列不能構(gòu)造該二叉樹(shù)的后序遍歷序列第四部分樹(shù)與二叉樹(shù)

分值:0~5分(每年)分?jǐn)?shù)比重:6%重要知識(shí)點(diǎn):

1、圖的基本概念和存儲(chǔ)結(jié)構(gòu)

2、圖的遍歷

3、拓?fù)渑判蚝妥钚∩蓸?shù)

4、關(guān)鍵路徑

5、最短路徑第五部分圖

圖的基本概念和存儲(chǔ)結(jié)構(gòu)圖的基本概念:無(wú)向圖、有向圖、無(wú)向完全圖、有向完全圖、稀疏圖、稠密圖、子圖、有向圖與無(wú)向圖的頂點(diǎn)的度、網(wǎng)、回路和環(huán)、路徑長(zhǎng)度、簡(jiǎn)單路徑、簡(jiǎn)單回路、連通圖、連通分量、強(qiáng)連通圖、強(qiáng)連通分量。圖的存儲(chǔ)結(jié)構(gòu)鄰接矩陣(數(shù)組)表示法;鄰接表;十字鏈表;第五部分圖

BACDG1BADEG2C圖的遍歷深度優(yōu)先搜索:是指按照深度方向搜索,它類似于樹(shù)的先根遍歷。廣度優(yōu)先搜索:是指按照廣度方向搜索,它類似于樹(shù)的按層次遍歷。第五部分圖

v1v2v3v4v5v6v7v8v9v1v2v4v7v9v5v3v6v8BAEDCABCDEv1v2v3v4v5v9v6v8v7ABCED拓?fù)渑判蛲負(fù)渑判驅(qū)⒁粋€(gè)有向圖中的所有結(jié)點(diǎn)排成一個(gè)序列,使得圖中所有結(jié)點(diǎn)應(yīng)存在的前驅(qū)和后繼關(guān)系都能在隊(duì)列中體現(xiàn)(前驅(qū)在前,后繼在后)。過(guò)程⑴從AOV網(wǎng)中選擇一個(gè)沒(méi)有前驅(qū)的頂點(diǎn)并且輸出;⑵從AOV網(wǎng)中刪去該頂點(diǎn)并且刪去所有以該頂點(diǎn)為尾的?。虎侵貜?fù)上述兩步,直到全部頂點(diǎn)都被輸出;第五部分圖

C1C2C3C4C6C5C7拓?fù)湫蛄校篊1,C2,C3,C4,C5,C6,C7

最小生成樹(shù)概念生成樹(shù)是連通圖上的一個(gè)極小連通子圖。最小生成樹(shù)是一個(gè)連通網(wǎng)中所有生成樹(shù)中各邊權(quán)值之和最小的生成樹(shù)。最小生成樹(shù)的算法:

1、普里姆算法2、克魯斯卡爾算法第五部分圖

abdcef6155542663abdcef15342abdcef1532554關(guān)鍵路徑概念從源點(diǎn)到匯點(diǎn)的最長(zhǎng)路徑的長(zhǎng)度即為完成整個(gè)工程任務(wù)所需的時(shí)間,該路徑叫做關(guān)鍵路徑。關(guān)鍵路徑上的活動(dòng)叫關(guān)鍵活動(dòng)。關(guān)鍵路徑的求法:

⑴事件的最早發(fā)生時(shí)間ve[k]⑵事件的最遲發(fā)生時(shí)間vl[k]

⑶活動(dòng)的最早開(kāi)始時(shí)間e[i]⑷活動(dòng)的最晚開(kāi)始時(shí)間l[i]第五部分圖

v2v1v3v4v5v8v6v7v9a1=6a4=1a7=9a10=2a11=4a8=7a9=4a5=1a6=2a3=5a2=4第五部分圖

v2v1v3v4v5v8v6v7v9a1=6a4=1a7=9a10=2a11=4a8=7a9=4a5=1a6=2a3=5a2=4ve[k]v2v7v6v5v4v1v3v9v8064577161418a2a7a6a5a4a1a3a9a8e[i]000645777a10a111614第五部分圖

v2v1v3v4v5v8v6v7v9a1=6a4=1a7=9a10=2a11=4a8=7a9=4a5=1a6=2a3=5a2=4l[i]10778663201614a2a7a6a5a4a1a3a9a8a10a11v2v7v6v5v4v1v3v9v8vl[k]1814161078660最短路徑分類1、求圖中的一個(gè)結(jié)點(diǎn)到其他結(jié)點(diǎn)的最短路徑。2、求圖中任意兩點(diǎn)間的最短路徑。最短路徑的求法:

⑴迪杰斯特拉(Dijkstra)算法⑵Floyd算法第五部分圖

BAEDC105030101002060S={A,B,D,C,E}A→B:(A,B)10A→C:(A,D,C)50A→D:(A,D)30A→E:(A,D,C,E)60BAEDC105030101002060最短路徑分類1、求圖中的一個(gè)結(jié)點(diǎn)到其他結(jié)點(diǎn)的最短路徑。2、求圖中任意兩點(diǎn)間的最短路徑。最短路徑的求法:

⑴迪杰斯特拉(Dijkstra)算法⑵Floyd算法第五部分圖

abd53863c122真題201105●設(shè)一個(gè)包含N個(gè)頂點(diǎn),E條邊的簡(jiǎn)單無(wú)向圖采用鄰接矩陣存儲(chǔ)結(jié)構(gòu),則該矩陣中的非零元素?cái)?shù)目為(60)(60)A.N

B.E

C.2E

D.N+E200505●一個(gè)具有n(n>0)個(gè)頂點(diǎn)的連通無(wú)向圖至少有(49)條邊。(49)A.n+1

B.n

C.n+2

D.n-1第五部分圖

真題200511●在活動(dòng)圖中,結(jié)點(diǎn)表示項(xiàng)目中各個(gè)工作階段的里程碑,連接各個(gè)結(jié)點(diǎn)的邊表示活動(dòng),邊上的數(shù)字表示活動(dòng)持續(xù)的時(shí)間。在下面的活動(dòng)圖中,從A到J的關(guān)鍵路徑是(16),關(guān)鍵路徑長(zhǎng)度是(17),從E開(kāi)始的活動(dòng)啟動(dòng)的最早時(shí)間是(18)。

(16)A.ABEGJ

B.ADFHJ

C.ACFGJ

D.ADFIJ(17)A.22

B.49

C.19

D.35(18)A.10

B.12

C.13

D.15第五部分圖

真題200511●簡(jiǎn)單無(wú)向圖的鄰接矩陣是對(duì)稱的,可以對(duì)其進(jìn)行壓縮存儲(chǔ)。若無(wú)向圖G有n個(gè)節(jié)點(diǎn)。若無(wú)向圖G有n個(gè)節(jié)點(diǎn),其鄰接矩陣為A[1..n,1..n],且壓縮存儲(chǔ)在B[1..k]中,則k的值至少為_(kāi)___(40)____。若按行壓縮存儲(chǔ)對(duì)稱矩陣的上三角元素,則當(dāng)n等于10時(shí),邊(V6,V3)的信息存儲(chǔ)在B[___(41)___]中。(40)A.n(n+1)/2B.n2/2C.(n-1)(n+1)/2D.n(n-1)/2(41)A.18B.19C.20D.21第五部分圖

真題200605●(59)是右圖的合法拓?fù)湫蛄小?/p>

(59)A.654321B.123456C.563421D.564213第五部分圖

真題200611●求單源點(diǎn)最短路徑的迪杰斯特拉(Dijkstra)算法是按(57)的順序求源點(diǎn)到各頂點(diǎn)的最短路徑的。(57)A.路徑長(zhǎng)度遞減B.路徑長(zhǎng)度遞增C.頂點(diǎn)編號(hào)遞減D.頂點(diǎn)編號(hào)遞增第五部分圖

真題200705●某工程計(jì)劃如下圖所示,各個(gè)作業(yè)所需的天數(shù)如下表所示,設(shè)該工程從第0天開(kāi)工,則該工程的最短工期是(59)天,作業(yè)J最遲應(yīng)在第(60)天開(kāi)工。第五部分圖

真題200711●拓?fù)渑判蚴侵赣邢驁D中的所有頂點(diǎn)排成一個(gè)線性序列的過(guò)程,若在有向圖中從頂點(diǎn)vi到vj有一條路徑,則在該線性序列中,頂點(diǎn)vi必然在頂點(diǎn)vj之前。因此,若不能得到全部頂點(diǎn)的拓?fù)渑判蛐蛄?,則說(shuō)明該有向圖一定(57)。(57)A.包含回路B.是強(qiáng)連通圖C.是完全圖D.是有向樹(shù)200805●設(shè)一個(gè)包含N個(gè)頂點(diǎn)、E條邊的簡(jiǎn)單有向圖采用鄰接矩陣存儲(chǔ)結(jié)構(gòu)(矩陣元素A[i][j]等于1/0分別表示頂點(diǎn)i與頂點(diǎn)j之間有/無(wú)弧),則該矩陣的元素?cái)?shù)目為_(kāi)_(60)__,其中非零元素?cái)?shù)目為_(kāi)_(61)__。(60)A.E2B.N2C.N2-E2D.N2+E2(61)A.NB.N+EC.ED.N–E第五部分圖

真題200811●(59)的鄰接矩陣是一個(gè)對(duì)稱矩陣。(59)A.無(wú)向圖B.AOV網(wǎng)C.AOE網(wǎng)D.有向圖●具有n個(gè)頂點(diǎn)、e條邊的圖采用鄰接表存儲(chǔ)結(jié)構(gòu),進(jìn)行深度優(yōu)先遍歷和廣度優(yōu)先遍歷運(yùn)算的時(shí)間復(fù)雜度均為(63)。(63)A.O(n2)B.O(e2)C.O(n*e)D.O(n+e)第五部分圖

真題200905●下面關(guān)于圖(網(wǎng))的敘述,正確的是(58)。(58)A.連通無(wú)向網(wǎng)的最小生成樹(shù)中,頂點(diǎn)數(shù)恰好比邊數(shù)多1B.若有向圖是強(qiáng)連通的,則其邊數(shù)至少是頂點(diǎn)數(shù)的2倍C.可以采用AOV網(wǎng)估算工程的工期D.關(guān)鍵路徑是AOE網(wǎng)中源點(diǎn)至匯點(diǎn)的最短路徑第五部分圖

分值:5~15分(每年)分?jǐn)?shù)比重:10%重要知識(shí)點(diǎn):

1、靜態(tài)表查找——順序查找、折半查找

2、動(dòng)態(tài)表查找——二叉排序樹(shù)、平衡二叉樹(shù)3、哈希表

4、插入類排序5、交換類排序6、選擇類排序7、分配類排序第六部分排序與查找

查找基本概念:靜態(tài)查找:不涉及插入和刪除操作的查找。動(dòng)態(tài)查找:涉及插入和刪除操作的查找。平均查找長(zhǎng)度:將查找算法進(jìn)行的關(guān)鍵碼的比較次數(shù)的數(shù)學(xué)期望值定義為平均查找長(zhǎng)度。計(jì)算公式為:其中:n:?jiǎn)栴}規(guī)模,查找集合中的記錄個(gè)數(shù);pi:查找第i個(gè)記錄的概率;ci:查找第i個(gè)記錄所需的關(guān)鍵碼的比較次數(shù)。第六部分排序與查找

靜態(tài)查找順序查找:從線性表的一端向另一端逐個(gè)將關(guān)鍵碼與給定值進(jìn)行比較,若相等,則查找成功,給出該記錄在表中的位置;若整個(gè)表檢測(cè)完仍未找到與給定值相等的關(guān)鍵碼,則查找失敗,給出失敗信息。折半查找:在有序表中,取中間元素作為比較對(duì)象1、若給定值與中間記錄的關(guān)鍵字相等,則查找成功;2、若給定值小于中間記錄的關(guān)鍵字,則在中間記錄的左半?yún)^(qū)繼續(xù)查找;若給定值大于中間記錄的關(guān)鍵字,則在中間記錄的右半?yún)^(qū)繼續(xù)查找。3、不斷重復(fù)上述過(guò)程,直到查找成功,或所查找的區(qū)域無(wú)記錄(low>high),查找失敗。

前提:線性表中的記錄必須按關(guān)鍵字有序;必須采用順序存儲(chǔ)。第六部分排序與查找

動(dòng)態(tài)查找——二叉排序樹(shù)定義:一棵二叉樹(shù)中,每一個(gè)結(jié)點(diǎn)的左子樹(shù)上的結(jié)點(diǎn)都比它小,右子樹(shù)上的結(jié)點(diǎn)都比它大。這種二叉樹(shù)稱為二叉排序樹(shù)。二叉排序樹(shù)的查找:從根結(jié)點(diǎn)開(kāi)始比較,如果比根結(jié)點(diǎn)的值小,則到根結(jié)點(diǎn)的左子樹(shù)上去查找;比根結(jié)點(diǎn)大,到根結(jié)點(diǎn)的右子樹(shù)上去查找;與根結(jié)點(diǎn)相等,說(shuō)明查找成功。依此類推,直到所要查找的結(jié)點(diǎn)為空,說(shuō)明查找失敗。二叉排序樹(shù)的構(gòu)造:將二叉排序樹(shù)初始化為一棵空樹(shù),然后按照順序逐個(gè)讀入元素,每讀入一個(gè)元素,就建立一個(gè)新的結(jié)點(diǎn)插入到當(dāng)前已生成的二叉排序樹(shù)中,即調(diào)用上述二叉排序樹(shù)的插入算法將新結(jié)點(diǎn)插入。直到所有結(jié)點(diǎn)插入完成,二叉排序樹(shù)就構(gòu)造完成了。注:若二叉排序樹(shù)為空樹(shù),則新插入的結(jié)點(diǎn)為新的根結(jié)點(diǎn);否則,新插入的結(jié)點(diǎn)必為一個(gè)新的葉子結(jié)點(diǎn),其插入位置由查找過(guò)程得到。第六部分排序與查找

動(dòng)態(tài)查找——二叉排序樹(shù)結(jié)論:對(duì)同樣一組數(shù)據(jù)元素,如果輸入的順序不同,則所建的二叉樹(shù)形態(tài)也不同。特點(diǎn):

1、一個(gè)無(wú)序序列可以通過(guò)構(gòu)造一棵二叉排序樹(shù)而變成一個(gè)有序序列;

2、每次插入的新結(jié)點(diǎn)都是二叉排序樹(shù)上新的葉子結(jié)點(diǎn);

3、找到插入位置后,不必移動(dòng)其它結(jié)點(diǎn),僅需修改某個(gè)結(jié)點(diǎn)的指針;

4、在左子樹(shù)/右子樹(shù)的查找過(guò)程與在整棵樹(shù)上查找過(guò)程相同;

5、新插入的結(jié)點(diǎn)沒(méi)有破壞原有結(jié)點(diǎn)之間的關(guān)系。第六部分排序與查找

練習(xí):關(guān)鍵字的輸入順序?yàn)椋?5,24,53,12,28,90,和24,53,90,12,28,45,分別構(gòu)造二叉排序樹(shù)動(dòng)態(tài)查找——二叉排序樹(shù)的刪除1.

若結(jié)點(diǎn)p是葉子,則直接刪除結(jié)點(diǎn)p;2.若p結(jié)點(diǎn)只有左子樹(shù),或只有右子樹(shù),則因?yàn)樵摻Y(jié)點(diǎn)只有左子樹(shù)或只有右子樹(shù),也就是說(shuō),其后繼只有一個(gè)分支。刪除該結(jié)點(diǎn)時(shí),只要將被刪除結(jié)點(diǎn)的唯一后繼(左子樹(shù)或右子樹(shù))直接鏈接到被刪除結(jié)點(diǎn)的位置即可。3.若結(jié)點(diǎn)p的左右子樹(shù)均不空:首先找到p結(jié)點(diǎn)在中序序列中的直接前驅(qū)s結(jié)點(diǎn),然后用s結(jié)點(diǎn)的值,替代p結(jié)點(diǎn)的值,再將s結(jié)點(diǎn)刪除,因?yàn)閟的右指針一定為空,所以只要把s的左孩子鏈接到s結(jié)點(diǎn)本身的位置即可。第六部分排序與查找

動(dòng)態(tài)查找——平衡二叉樹(shù)平衡二叉樹(shù):或者是一棵空的二叉排序樹(shù),或者是具有下列性質(zhì)的二叉排序樹(shù):⑴根結(jié)點(diǎn)的左子樹(shù)和右子樹(shù)的深度最多相差1;⑵根結(jié)點(diǎn)的左子樹(shù)和右子樹(shù)也都是平衡二叉樹(shù)。平衡因子:結(jié)點(diǎn)的平衡因子是該結(jié)點(diǎn)的左子樹(shù)的深度與右子樹(shù)的深度之差。在平衡二叉樹(shù)中,結(jié)點(diǎn)的平衡因子可以是1,0,-1。最小不平衡子樹(shù):在平衡二叉樹(shù)的構(gòu)造過(guò)程中,以距離插入結(jié)點(diǎn)最近的、且平衡因子絕對(duì)值大于1的祖先結(jié)點(diǎn)為根的子樹(shù)。第六部分排序與查找

動(dòng)態(tài)查找——平衡二叉樹(shù)的構(gòu)造基本思想:在構(gòu)造二叉排序樹(shù)的過(guò)程中,每插入一個(gè)結(jié)點(diǎn)時(shí),首先檢查是否因插入新結(jié)點(diǎn)而破壞了樹(shù)的平衡性,若是,則找出最小不平衡子樹(shù),在保持二叉排序樹(shù)特性的前提下,調(diào)整最小不平衡子樹(shù)中各結(jié)點(diǎn)之間的鏈接關(guān)系,進(jìn)行相應(yīng)的旋轉(zhuǎn),使之成為新的平衡子樹(shù)。1.LL型:由于在A的左子樹(shù)根結(jié)點(diǎn)B的左子樹(shù)上插入結(jié)點(diǎn),A的平衡因子由1變?yōu)?。2.RR型:由于在A的右子樹(shù)根結(jié)點(diǎn)B的右子樹(shù)上插入結(jié)點(diǎn),A的平衡因子由-1變?yōu)?2。3.LR型:由于在A的左子樹(shù)根結(jié)點(diǎn)B的右子樹(shù)上插入結(jié)點(diǎn),A的平衡因子由1變?yōu)?。4.RL型:由于在A的右子樹(shù)根結(jié)點(diǎn)B的左子樹(shù)上插入結(jié)點(diǎn),A的平衡因子由1變?yōu)?。第六部分排序與查找

動(dòng)態(tài)查找——平衡二叉樹(shù)的構(gòu)造第六部分排序與查找

LL型RR型第六部分排序與查找

LR型RR型動(dòng)態(tài)查找——平衡二叉樹(shù)依次輸入表(30,15,28,20,24,10,12,68,35,50,46,55)中的元素,生成一棵二叉排序樹(shù)

(1)試畫(huà)出生成之后的二叉排序樹(shù);(2)假定每個(gè)元素的查找概率相等,試計(jì)算該二叉排序樹(shù)的平均查找長(zhǎng)度;(3)畫(huà)出由這組元素所構(gòu)造的平衡二叉樹(shù)。第六部分排序與查找

哈希表定義:在元素的關(guān)鍵字k和元素的存儲(chǔ)位置p之間建立一個(gè)對(duì)應(yīng)關(guān)系H,使得p=H(k),H稱為哈希函數(shù)。創(chuàng)建哈希表時(shí),把關(guān)鍵字為k的元素直接存入地址為H(k)的單元;以后當(dāng)查找關(guān)鍵字為k的元素時(shí),再利用哈希函數(shù)計(jì)算出該元素的存儲(chǔ)位置p=H(k),從而達(dá)到按關(guān)鍵字直接存取元素的目的。這種查找的方法稱為哈希法。哈希函數(shù)設(shè)計(jì)原則:⑴計(jì)算簡(jiǎn)單。哈希函數(shù)不應(yīng)該有很大的計(jì)算量,否則會(huì)降低查找效率。⑵函數(shù)值即哈希地址分布均勻。函數(shù)值要盡量均勻散布在地址空間,這樣才能保證存儲(chǔ)空間的有效利用并減少?zèng)_突。第六部分排序與查找

哈希表沖突:對(duì)于兩個(gè)不同關(guān)鍵碼ki≠kj,有H(ki)=H(kj),即兩個(gè)不同的記錄需要存放在同一個(gè)存儲(chǔ)位置。哈希函數(shù)沖突的處理方法:

1、開(kāi)放定址法(再散列法):線性探測(cè)再散列、二次探測(cè)再散列;

2、再哈希法:同時(shí)構(gòu)造多個(gè)不同的哈希函數(shù),當(dāng)哈希地址發(fā)生沖突時(shí),再用其他哈希函數(shù)來(lái)計(jì)算地址,直到?jīng)_突不再產(chǎn)生。

3、鏈地址法:將所有哈希地址為i的元素構(gòu)成一個(gè)單鏈表,并將單鏈表的頭指針存在哈希表的第i個(gè)單元中,因而查找、插入和刪除主要在這個(gè)鏈中進(jìn)行。4、建立公共溢出區(qū)法:將哈希表分為基本表和溢出表兩部分,凡是和基本表發(fā)生沖突的元素,一律填入溢出表。

第六部分排序與查找

哈希表裝填因子:哈希法中影響關(guān)鍵字比較次數(shù)的因素有三個(gè):哈希函數(shù)、處理沖突的方法以及哈希表的裝填因子。哈希表的裝填因子α的定義如下:α可描述哈希表的裝滿程度。α越小,發(fā)生沖突的可能性越?。沪猎酱?,發(fā)生沖突的可能性也越大。第六部分排序與查找

α=哈希表中元素個(gè)數(shù)哈希表的長(zhǎng)度基本概念內(nèi)部排序:整個(gè)排序過(guò)程完全在內(nèi)存中進(jìn)行,稱為內(nèi)部排序。外部排序:由于待排序的記錄個(gè)數(shù)太多,不能同時(shí)放置在內(nèi)存,而需要將另一部分記錄放置在外存上,整個(gè)排序過(guò)程需要在內(nèi)外存之間多次交換數(shù)據(jù)才能得到排序的結(jié)果。排序的穩(wěn)定性:相同關(guān)鍵字的相對(duì)位置關(guān)系在排序過(guò)程中沒(méi)有發(fā)生變化者,則稱所用的排序方法是穩(wěn)定的;反之,則稱為不穩(wěn)定的。第六部分排序與查找

插入類排序直接插入排序:每次將一個(gè)待排序的記錄按其關(guān)鍵碼的大小插入到一個(gè)已經(jīng)排好序的有序序列中,直到全部記錄排好序?yàn)橹埂U郯氩迦肱判颍阂哉郯氩檎液椭苯硬迦肱判騼煞N方法結(jié)合起來(lái)實(shí)現(xiàn)排序;希爾排序:根據(jù)不同的間距di將元素分成組,在各組內(nèi)進(jìn)行直接插入排序,di的值是由大到小,最后為1,即將所有元素放在一組里進(jìn)行排序第六部分排序與查找

第六部分排序與查找

直接插入4674165314264038866527341467416531426403886652734216467453142640388665273431646537414264038866527344141646537426403886652734514162646537440388665273461416264046537438866527347141626384046537486652734814162638404653748665273491416263840465365748627341014162627384046536574863411141626273438404653657486希爾排序467416531426403886652734126341653142740388665467422614164034275338746546863141626273438404653657486交換類排序冒泡排序:快速排序:第六部分排序與查找

快速排序4674165314264038866527341342716381426404686655374226271614343840467465538631416262734384046536574864141626273438404653657486選擇類排序:簡(jiǎn)單選擇排序、堆排序第六部分排序與查找

簡(jiǎn)單選擇4674165314264038866527341147416534626403886652734214167453462640388665273431416265346744038866527344141626274674403886655334514162627347440388665534661416262734384074866553467141626273438407486655346814162627343840468665537491416262734384046536586741014162627343840465365867411141626273438404653657486演示歸并排序基本思想:將兩個(gè)或兩個(gè)以上有序表合并成一個(gè)新的有序表。假設(shè)初始序列含有n個(gè)記錄,首先將這n個(gè)記錄看成n個(gè)有序的子序列,每個(gè)子序列的長(zhǎng)度為1,然后兩兩歸并,得到n/2個(gè)長(zhǎng)度為2的有序子序列;在此基礎(chǔ)上,再進(jìn)行兩兩歸并,如此重復(fù),直至得到一個(gè)長(zhǎng)度為n的有序序列為止。第六部分排序與查找

(19)(13)(05)(27)(01)(26)(31)(16)

(13,19)(05,27)(01,26)(16,31)

(05,13,19,27)(01,16,26,31)

(01,05,13,16,19,26,27,31)分配類排序基本思想:設(shè)待排序的數(shù)據(jù)元素關(guān)鍵字是m位d進(jìn)制整數(shù)(不足m位的關(guān)鍵字在高位補(bǔ)0),設(shè)置d個(gè)桶,分別編號(hào)為0,1,2,…,d-1。1、首先按關(guān)鍵字最低位的數(shù)值依次把各數(shù)據(jù)元素放到相應(yīng)的桶中,然后按照桶號(hào)從小到大和進(jìn)入桶中數(shù)據(jù)元素的先后次序收集分配在各桶中的數(shù)據(jù)元素,這樣就形成了數(shù)據(jù)元素集合的一個(gè)新的排列,我們稱這樣的一次排序過(guò)程為一次基數(shù)排序;

2、再對(duì)一次基數(shù)排序得到的序列按關(guān)鍵字次低位的數(shù)值依次把各數(shù)據(jù)元素放到相應(yīng)的桶中,然后按照桶號(hào)從小到大和進(jìn)入桶中數(shù)據(jù)元素的先后次序收集分配在各桶中的數(shù)據(jù)元素;這樣的過(guò)程重復(fù)進(jìn)行,當(dāng)完成了第m次基數(shù)排序后,就得到了排好序的數(shù)據(jù)元素序列。第六部分排序與查找

分配類排序基本思想:設(shè)待排序的數(shù)據(jù)元素關(guān)鍵字是m位d進(jìn)制整數(shù)(不足m位的關(guān)鍵字在高位補(bǔ)0),設(shè)置d個(gè)桶,分別編號(hào)為0,1,2,…,d-1。1、首先按關(guān)鍵字最低位的數(shù)值依次把各數(shù)據(jù)元素放到相應(yīng)的桶中,然后按照桶號(hào)從小到大和進(jìn)入桶中數(shù)據(jù)元素的先后次序收集分配在各桶中的數(shù)據(jù)元素,這樣就形成了數(shù)據(jù)元素集合的一個(gè)新的排列,我們稱這樣的一次排序過(guò)程為一次基數(shù)排序;

2、再對(duì)一次基數(shù)排序得到的序列按關(guān)鍵字次低位的數(shù)值依次把各數(shù)據(jù)元素放到相應(yīng)的桶中,然后按照桶號(hào)從小到大和進(jìn)入桶中數(shù)據(jù)元素的先后次序收集分配在各桶中的數(shù)據(jù)元素;這樣的過(guò)程重復(fù)進(jìn)行,當(dāng)完成了第m次基數(shù)排序后,就得到了排好序的數(shù)據(jù)元素序列。第六部分排序與查找

數(shù)據(jù)元素的關(guān)鍵字序列為{710,342,045,686,006,841,429,134,068,264}8411342231342644045568600667068871004299放置7101429213438413420454526406867686800609006710429134841342045264068686收集后的新序列:放置1341264234234294568667107841800604506809006045068134264342429686710841收集后的新序列:放置710841342134264045686006068429收集后的新序列:(a)第一趟基數(shù)排序

(b)第二趟基數(shù)排序

(c)第三趟基數(shù)排序排序方法最好情況平均時(shí)間最壞情況穩(wěn)定性直接插入O(n)O(n2)O(n2)√簡(jiǎn)單選擇O(n2)O(n2)O(n2)√冒泡O(n)O(n2)O(n2)√快速O(nlog2n)O(nlog2n)O(n2)×堆排序O(nlog2n)O(nlog2n)O(nlog2n)×歸并O(nlog2n)O(nlog2n)O(nlog2n)√基數(shù)O(d(n+rd))O(d(n+rd))O(d(n+rd))√第六部分排序與查找

各種排序方法性

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論