版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年山西省太原市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.等價無窮小
B.f(x)是比g(x)高階無窮小
C.f(x)是比g(x)低階無窮小
D.f(x)與g(x)是同階但非等價無窮小
2.
3.當(dāng)x→0時,2x+x2是x的A.A.等價無窮小B.較低階無窮小C.較高階無窮小D.同階但不等價的無窮小
4.設(shè)有直線當(dāng)直線l1與l2平行時,λ等于().
A.1B.0C.-1/2D.-1
5.
6.
7.
8.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.
B.
C.
D.
9.
10.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
11.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
12.
13.當(dāng)x一0時,與3x2+2x3等價的無窮小量是().
A.2x3
B.3x2
C.x2
D.x3
14.()。A.e-6
B.e-2
C.e3
D.e6
15.A.
B.
C.
D.
16.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
17.按照盧因的觀點,組織在“解凍”期間的中心任務(wù)是()
A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對變革的抵制C.變革約束力、驅(qū)動力的平衡D.保持新的組織形態(tài)的穩(wěn)定
18.
19.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
20.
21.當(dāng)x→0時,3x是x的().
A.高階無窮小量B.等價無窮小量C.同階無窮小量,但不是等價無窮小量D.低階無窮小量
22.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
23.
24.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
25.
26.
27.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計算有誤的一項為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
28.設(shè)y=x-5,則dy=().A.A.-5dxB.-dxC.dxD.(x-1)dx
29.
30.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
31.
32.A.A.3B.1C.1/3D.033.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
34.
35.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
36.
37.
A.2x2+x+C
B.x2+x+C
C.2x2+C
D.x2+C
38.人們對某一目標(biāo)的重視程度與評價高低,即人們在主觀上認(rèn)為這種報酬的價值大小叫做()
A.需要B.期望值C.動機(jī)D.效價39.設(shè)Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關(guān)40.二次積分等于()A.A.
B.
C.
D.
41.
A.1B.0C.-1D.-2
42.
43.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面44.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
45.
46.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
47.
48.
49.
50.A.A.
B.e
C.e2
D.1
二、填空題(20題)51.
52.53.曲線y=x3-6x的拐點坐標(biāo)為______.
54.
55.曲線f(x)=x/x+2的鉛直漸近線方程為__________。
56.57.58.
59.60.61.62.63.二元函數(shù)z=x2+3xy+y2+2x,則=______.64.已知平面π:2x+y一3z+2=0,則過原點且與π垂直的直線方程為________.
65.過點M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.
66.
67.
68.y″+5y′=0的特征方程為——.69.70.三、計算題(20題)71.72.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則73.求微分方程的通解.74.
75.求微分方程y"-4y'+4y=e-2x的通解.
76.
77.將f(x)=e-2X展開為x的冪級數(shù).78.79.證明:80.
81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.82.求曲線在點(1,3)處的切線方程.83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
85.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.87.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
88.
89.
90.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.
92.設(shè)有一圓形薄片x2+y2≤α2,在其上一點M(x,y)的面密度與點M到點(0,0)的距離成正比,求分布在此薄片上的物質(zhì)的質(zhì)量。
93.
94.
95.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.96.97.
98.求曲線y=sinx、y=cosx、直線x=0在第一象限所圍圖形的面積A及該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx。
99.求曲線y=在點(1,1)處的切線方程.
100.
又可導(dǎo).
五、高等數(shù)學(xué)(0題)101.設(shè)求六、解答題(0題)102.
參考答案
1.D
2.B解析:
3.D
4.C解析:
5.B
6.D
7.C
8.D
9.D
10.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
11.A
12.A
13.B由于當(dāng)x一0時,3x2為x的二階無窮小量,2x3為戈的三階無窮小量.因此,3x2+2x3為x的二階無窮小量.又由,可知應(yīng)選B.
14.A
15.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
16.B
17.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。
18.B解析:
19.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
20.A解析:
21.C本題考查的知識點為無窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時,3x是x的同階無窮小量,但不是等價無窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時無窮小量β與無窮小量α的階的關(guān)系時,要判定極限
這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.
22.D
23.D解析:
24.C
25.D解析:
26.B
27.C
28.C本題考查的知識點為微分運(yùn)算.
因此選C.
29.A
30.C
31.B解析:
32.A
33.C本題考查的知識點為可變限積分求導(dǎo).
由于當(dāng)f(x)連續(xù)時,,可知應(yīng)選C.
34.A解析:
35.D本題考查了函數(shù)的極值的知識點。
36.A
37.B
38.D解析:效價是指個人對達(dá)到某種預(yù)期成果的偏愛程度,或某種預(yù)期成果可能給行為者帶來的滿足程度。
39.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。
40.A本題考查的知識點為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
41.A
本題考查的知識點為導(dǎo)數(shù)公式.
可知應(yīng)選A.
42.B
43.D本題考查了二次曲面的知識點。
44.B
45.D解析:
46.D
47.A
48.C解析:
49.B
50.C本題考查的知識點為重要極限公式.
51.(-∞2)(-∞,2)解析:
52.53.(0,0)本題考查的知識點為求曲線的拐點.
依求曲線拐點的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(xk,f(xk)為曲線y=f(x)的拐點.
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時,y=0.
當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(0,0)為曲線y=x3-6x的拐點.
本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點的概念不清楚.拐點的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點稱之為曲線的拐點.其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點為(x0,f(x0)).
注意極值點與拐點的不同之處!
54.
55.x=-2
56.
57.
58.
59.
60.3本題考查了冪級數(shù)的收斂半徑的知識點.
所以收斂半徑R=3.
61.
62.63.2x+3y+2本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù)運(yùn)算.
則
64.
本題考查的知識點為直線方程和直線與平面的關(guān)系.
由于平面π與直線1垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取
65.
66.
67.y=lnx+Cy=lnx+C解析:68.由特征方程的定義可知,所給方程的特征方程為69.1.
本題考查的知識點為反常積分,應(yīng)依反常積分定義求解.
70.
本題考查的知識點為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時,t=2;當(dāng)x=2時,t=5.
這里的錯誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.
71.72.由等價無窮小量的定義可知
73.
74.
75.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
76.
77.
78.
79.
80.由一階線性微分方程通解公式有
81.
列表:
說明
82.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
83.函數(shù)的定義域為
注意
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
85.
86.
87.
88.
則
89.
90.由二重積分物理意義知
91.本題考查的知識點為:描述函數(shù)幾何性態(tài)的綜合問題。
極小值點為x=一1,極小值為曲線的凹區(qū)間為(一2,+∞);曲線的凸區(qū)間為(一∞,一2);
92.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版承包工地食堂餐廚垃圾處理合同模板3篇
- 2024蔬菜加工產(chǎn)品銷售合作協(xié)議3篇
- 2024年股權(quán)轉(zhuǎn)讓合同標(biāo)的及屬性詳細(xì)描述
- 2024年版物業(yè)托管服務(wù)協(xié)議版B版
- 二零二五版離婚協(xié)議書起草與審核合同2篇
- 2024版房屋贈與合同協(xié)議書大全
- 天津中德應(yīng)用技術(shù)大學(xué)《教育技術(shù)與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五版家政服務(wù)+家庭健康促進(jìn)合同3篇
- 太原幼兒師范高等??茖W(xué)?!段麽t(yī)外科學(xué)醫(yī)學(xué)免疫學(xué)與病原生物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年特殊用途變壓器安裝與性能測試合同2篇
- 對口升學(xué)《計算機(jī)應(yīng)用基礎(chǔ)》復(fù)習(xí)資料總匯(含答案)
- 《浸沒式液冷冷卻液選型要求》
- 迪士尼樂園總體規(guī)劃
- 2024年江蘇省蘇州市中考數(shù)學(xué)試卷含答案
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項考試題庫
- 介紹蝴蝶蘭課件
- 大學(xué)計算機(jī)基礎(chǔ)(第2版) 課件 第1章 計算機(jī)概述
- 數(shù)字化年終述職報告
- 2024年職工普法教育宣講培訓(xùn)課件
- 安保服務(wù)評分標(biāo)準(zhǔn)
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
評論
0/150
提交評論