下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.2.已知,復(fù)數(shù),,且為實數(shù),則()A. B. C.3 D.-33.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.4.已知,且,則()A. B. C. D.5.已知函數(shù),以下結(jié)論正確的個數(shù)為()①當(dāng)時,函數(shù)的圖象的對稱中心為;②當(dāng)時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時,在上的最大值為1.A.1 B.2 C.3 D.46.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.7.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若復(fù)數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.9.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能10.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設(shè)送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.11.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.12.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.14.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.15.如圖,已知,,為的中點,為以為直徑的圓上一動點,則的最小值是_____.16.在中,內(nèi)角的對邊分別是,若,,則____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大?。唬?)若的面積為,,求.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).點在曲線上,點滿足.(1)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,求動點的軌跡的極坐標(biāo)方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.19.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.20.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.21.(12分)已知函數(shù)的最大值為,其中.(1)求實數(shù)的值;(2)若求證:.22.(10分)已知函數(shù),.(1)當(dāng)時,求函數(shù)的值域;(2),,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.2.B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復(fù)數(shù)的概念,考查運算求解能力.3.A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.4.B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.5.C【解析】
逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當(dāng)時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因為,,所以最大值為64,結(jié)論錯誤.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.6.B【解析】
由可得,所以,故選B.7.A【解析】
將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點,從而可選出所在象限.【詳解】解:,所以所對應(yīng)的點為在第一象限.故選:A.【點睛】本題考查了復(fù)數(shù)的乘法運算,考查了復(fù)數(shù)對應(yīng)的坐標(biāo).易錯點是誤把當(dāng)成進行計算.8.C【解析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復(fù)數(shù)的除法運算,復(fù)數(shù)的概念運用.9.B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題.10.D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點睛】考查幾何概型,是基礎(chǔ)題.11.A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運算與求解能力,數(shù)基礎(chǔ)題.12.B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.14.【解析】
該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補形法的運用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補形法(構(gòu)造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構(gòu)成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.15.【解析】
建立合適的直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),進而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點,,,設(shè)點,所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因為,所以的最小值為.故答案為:【點睛】本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.16.【解析】
由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.18.(1)();(2)【解析】
(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標(biāo)方程的互化公式運算即可;(2)設(shè),,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因為,設(shè),,則,,.【點睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,考查學(xué)生的計算能力,是一道容易題.19.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.20.(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.21.(1)1;(2)證明見解析.【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得的最大值,進而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時,取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時等號成立,令,則在上單調(diào)遞減當(dāng)時,.【點睛】本小題主要考查含有絕對值的函數(shù)的最值的求法,考查利用基本不等式進行證明,屬于中檔題.22.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人終止勞動協(xié)議
- 難治性傷口病因介紹
- 藥物濫用性頭痛病因介紹
- 7.1《反對黨八股(節(jié)選)》【中職專用】高一語文(高教版2023基礎(chǔ)模塊上冊)
- 七年級政治知識讓人生更美麗2省公開課一等獎全國示范課微課
- 2024-2025學(xué)年人教版八年級英語上學(xué)期期末真題 專題07 閱讀理解(說明文)(安徽專用)
- 2022-2023學(xué)年天津四十七中高三(上)期末語文試卷
- 電子裝接實36課件講解
- 2023年旋渦式鼓風(fēng)機項目融資計劃書
- 2023年公路養(yǎng)護項目融資計劃書
- 咨詢咨詢合同三篇
- 成都錦城學(xué)院《數(shù)據(jù)庫原理與應(yīng)用》2023-2024學(xué)年期末試卷
- 電子課件中職英語基礎(chǔ)模塊下冊雙色U2-Role-Models
- 財務(wù)會計監(jiān)督檢查工作總結(jié)
- 人教版三年級上冊數(shù)學(xué)期末試卷含答案
- 2024秋期國家開放大學(xué)專科《高等數(shù)學(xué)基礎(chǔ)》一平臺在線形考(形考任務(wù)一至四)試題及答案
- 《互聯(lián)網(wǎng)影響新體驗》課件2024--2025學(xué)年人教版(2024)初中信息科技七年級全一冊
- 2024年合肥高新公共資源交易限公司招聘6人高頻難、易錯點500題模擬試題附帶答案詳解
- 2024山東濟南歷下控股集團限公司招聘30人高頻難、易錯點500題模擬試題附帶答案詳解
- 《那一定會很好》公開課一等獎創(chuàng)新教學(xué)設(shè)計
- 北師大版五年級上《心理健康》第9課《遠離厭學(xué)》教案
評論
0/150
提交評論