版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年安徽省六安市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.
3.A.A.
B.
C.
D.
4.A.A.必條件收斂B.必絕對收斂C.必發(fā)散D.收斂但可能為條件收斂,也可能為絕對收斂
5.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
6.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)
7.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx
8.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
9.A.-cosxB.-ycosxC.cosxD.ycosx
10.
11.當(dāng)x→0時(shí),下列變量中為無窮小的是()。
A.lg|x|
B.
C.cotx
D.
12.
13.
14.
15.A.A.1/2B.1C.2D.e
16.
17.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
18.()。A.過原點(diǎn)且平行于X軸B.不過原點(diǎn)但平行于X軸C.過原點(diǎn)且垂直于X軸D.不過原點(diǎn)但垂直于X軸
19.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
20.二次積分等于()A.A.
B.
C.
D.
21.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
22.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
23.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
24.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。
A.eB.1C.1+e2
D.ln2
25.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
26.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
27.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
28.A.A.
B.
C.
D.
29.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
30.下列關(guān)系正確的是()。A.
B.
C.
D.
31.
32.
33.
34.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.435.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C
36.A.e
B.e-1
C.-e-1
D.-e
37.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面38.則f(x)間斷點(diǎn)是x=()。A.2B.1C.0D.-1
39.設(shè)函數(shù)/(x)=cosx,則
A.1
B.0
C.
D.-1
40.
41.
42.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
43.
44.
45.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號不定46.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
47.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無窮小量f(x)與g(x),有
A.f(x)對于g(x)是高階的無窮小量
B.f(x)對于g(x)是低階的無窮小量
C.f(x)與g(x)為同階無窮小量,但非等價(jià)無窮小量
D.f(x)與g(x)為等價(jià)無窮小量
48.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價(jià)無窮小D.等價(jià)無窮小49.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面
50.
二、填空題(20題)51.
52.53.極限=________。
54.
55.
56.
57.
58.
59.
60.微分方程y"-y'=0的通解為______.
61.設(shè),則f'(x)=______.
62.
63.y"+8y=0的特征方程是________。
64.65.∫(x2-1)dx=________。
66.設(shè)f(x)=1+cos2x,則f'(1)=__________。
67.
68.69.
70.
三、計(jì)算題(20題)71.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
72.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.73.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
74.
75.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則76.求曲線在點(diǎn)(1,3)處的切線方程.77.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).78.79.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
80.求微分方程y"-4y'+4y=e-2x的通解.
81.82.證明:83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
84.
85.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
86.
87.將f(x)=e-2X展開為x的冪級數(shù).88.求微分方程的通解.89.90.
四、解答題(10題)91.
92.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.93.所圍成的平面區(qū)域。94.計(jì)算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.95.求96.
97.
98.
99.設(shè)函數(shù)y=xlnx,求y''.100.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求五、高等數(shù)學(xué)(0題)101.
六、解答題(0題)102.
參考答案
1.C解析:
2.D解析:
3.C
4.D
5.A本題考查的知識點(diǎn)為利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
6.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由于存在,因此
可知應(yīng)選B.
7.C本題考查的知識點(diǎn)為高階偏導(dǎo)數(shù).
由于z=ysinx,因此
可知應(yīng)選C.
8.C
9.C本題考查的知識點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
10.A解析:
11.D
12.B
13.D解析:
14.B
15.C
16.B解析:
17.D本題考查的知識點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項(xiàng)式.
當(dāng)α為單特征根時(shí),可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時(shí),可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.
18.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過原點(diǎn)(或由
19.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
20.A本題考查的知識點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
21.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
22.B
23.D
24.C
25.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
26.C
27.B本題考查的知識點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。
28.D本題考查的知識點(diǎn)為級數(shù)的基本性質(zhì).
29.C
30.C本題考查的知識點(diǎn)為不定積分的性質(zhì)。
31.B
32.A
33.A
34.B
35.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識點(diǎn)。
36.B所給極限為重要極限公式形式.可知.故選B.
37.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
38.Df(x)為分式,當(dāng)X=-l時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)x=-1為f(x)的間斷點(diǎn),故選D。
39.D
40.D解析:
41.A
42.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
43.C
44.D
45.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
46.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。
47.C
48.B
49.B
50.B
51.
52.1本題考查了收斂半徑的知識點(diǎn)。53.因?yàn)樗髽O限中的x的變化趨勢是趨近于無窮,因此它不是重要極限的形式,由于=0,即當(dāng)x→∞時(shí),為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知
54.(-22)
55.
56.
57.
本題考查的知識點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
58.
59.
60.y=C1+C2exy=C1+C2ex
解析:本題考查的知識點(diǎn)為二階級常系數(shù)線性微分方程的求解.
特征方程為r2-r=0,
特征根為r1=0,r2=1,
方程的通解為y=C1+C2ex.
61.本題考查的知識點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
62.
63.r2+8r=0本題考查的知識點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。64.0
本題考查的知識點(diǎn)為無窮小量的性質(zhì).
65.
66.-2sin2
67.
68.69.
70.
71.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%72.函數(shù)的定義域?yàn)?/p>
注意
73.
74.75.由等價(jià)無窮小量的定義可知76.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.
列表:
說明
78.
79.由二重積分物理意義知
80.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
81.
82.
83.
84.
85.
86.
則
87.
88.
89.90.由一階線性微分方程通解公式有
91.92.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)的切線方程為y-a2=2a(x-a),即y=2ax-a2,曲線y=x2,其過點(diǎn)A(a,a2)的切線及x軸圍成的平面圖形的面積
由題設(shè)S=1/12,可得a=1,因此A點(diǎn)的坐標(biāo)為(1,1).過A點(diǎn)的切線方程為y-1=2(x-1)或y=2x-1.解析:本題考查的知識點(diǎn)為定積分的幾何意義和曲線的切線方程。本題在利用定積分表示平面圖形時(shí),以y為積分變量,以簡化運(yùn)算,這是值得注意的技巧。93.解:D的圖形見右圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能木屋裝配一體化工程合同4篇
- 2025年度教育集團(tuán)下屬學(xué)校副校長長期聘用合同
- 2025年度節(jié)能型車床設(shè)備采購與節(jié)能評估合同4篇
- 2025版文化旅游合同協(xié)議
- 專業(yè)監(jiān)理裝修工程協(xié)議(2024年)3篇
- 2025版木材貿(mào)易公司信用擔(dān)保服務(wù)合同樣本4篇
- 二零二五版婚禮紀(jì)實(shí)攝影服務(wù)合同3篇
- 2025年度木屋裝飾裝修一體化合同4篇
- 2025版影視剪輯行業(yè)剪輯師勞務(wù)合同標(biāo)準(zhǔn)文本3篇
- 二零二五年度木質(zhì)包裝箱設(shè)計(jì)與木工班組制作協(xié)議4篇
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計(jì)與授權(quán)使用3篇
- 心肺復(fù)蘇課件2024
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊》專題培訓(xùn)
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院專升本管理學(xué)真題
- 全國身份證前六位、區(qū)號、郵編-編碼大全
- 2024-2025學(xué)年福建省廈門市第一中學(xué)高一(上)適應(yīng)性訓(xùn)練物理試卷(10月)(含答案)
- 《零售學(xué)第二版教學(xué)》課件
- 廣東省珠海市香洲區(qū)2023-2024學(xué)年四年級下學(xué)期期末數(shù)學(xué)試卷
- 房地產(chǎn)行業(yè)職業(yè)生涯規(guī)劃
- 江蘇省建筑與裝飾工程計(jì)價(jià)定額(2014)電子表格版
- MOOC 數(shù)字電路與系統(tǒng)-大連理工大學(xué) 中國大學(xué)慕課答案
評論
0/150
提交評論