版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年福建省福州市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.下列關(guān)于動載荷的敘述不正確的一項是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計
B.勻速直線運動時的動荷因數(shù)為
C.自由落體沖擊時的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
3.設(shè)y=x+sinx,則y=()A.A.sinx
B.x
C.x+cosx
D.1+cosx
4.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無定義5.。A.2B.1C.-1/2D.06.
等于()A.A.
B.
C.
D.0
7.A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散8.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
9.
10.
11.
12.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
13.A.A.0
B.
C.arctanx
D.
14.
15.A.A.
B.
C.
D.
16.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
17.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr
B.∫0πdθ∫0ar3drC.D.18.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
19.下列各式中正確的是
A.A.
B.B.
C.C.
D.D.
20.A.A.-3/2B.3/2C.-2/3D.2/3
21.A.f(2x)
B.2f(x)
C.f(-2x)
D.-2f(x)
22.
()A.x2
B.2x2
C.xD.2x23.當(dāng)a→0時,2x2+3x是x的().A.A.高階無窮小B.等價無窮小C.同階無窮小,但不是等價無窮小D.低階無窮小
24.
25.
26.
27.
28.
29.
30.
31.A.A.
B.
C.
D.
32.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
33.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對
34.
35.
36.A.A.1
B.
C.m
D.m2
37.
38.
A.2x+1B.2xy+1C.x2+1D.2xy39.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)40.A.A.arctanx2
B.2xarctanx
C.2xarctanx2
D.
41.
42.
43.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
44.單位長度扭轉(zhuǎn)角θ與下列哪項無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)45.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點
46.
47.當(dāng)x→0時,與x等價的無窮小量是
A.A.
B.ln(1+x)
C.C.
D.x2(x+1)
48.
49.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值50.()A.A.1B.2C.1/2D.-1二、填空題(20題)51.52.53.設(shè)z=ln(x2+y),則dz=______.54.
55.
56.設(shè)z=sin(y+x2),則.
57.設(shè)z=sin(x2+y2),則dz=________。
58.設(shè)y=e3x知,則y'_______。59.
60.
61.
62.
63.64.
65.
66.
67.設(shè)y=f(x)在點x=0處可導(dǎo),且x=0為f(x)的極值點,則f(0)=.68.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。69.函數(shù)的間斷點為______.70.三、計算題(20題)71.72.73.求曲線在點(1,3)處的切線方程.74.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.76.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
77.
78.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
79.求微分方程的通解.80.證明:81.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則82.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
83.
84.求微分方程y"-4y'+4y=e-2x的通解.
85.
86.
87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.90.將f(x)=e-2X展開為x的冪級數(shù).四、解答題(10題)91.計算∫xcosx2dx.
92.
93.設(shè)f(x)為連續(xù)函數(shù),且
94.
95.96.
97.y=xlnx的極值與極值點.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.曲線y=x3一12x+1在區(qū)間(0,2)內(nèi)()。
A.凸且單增B.凹且單減C.凸且單增D.凹且單減六、解答題(0題)102.
參考答案
1.A
2.C
3.D
4.A因為f"(x)=故選A。
5.A
6.D本題考查的知識點為定積分的性質(zhì).
由于當(dāng)f(x)可積時,定積分的值為一個確定常數(shù),因此總有
故應(yīng)選D.
7.A本題考杏的知識點為級數(shù)的絕對收斂與條件收斂.
8.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。
9.C
10.A
11.D解析:
12.D本題考查的知識點為微分運算.
可知應(yīng)選D.
13.A
14.A解析:
15.B本題考查的知識點為級數(shù)收斂性的定義.
16.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知
可知應(yīng)選A。
17.B因為D:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。
18.A本題考查的知識點為偏導(dǎo)數(shù)的計算。對于z=x2y,求的時候,要將z認定為x的冪函數(shù),從而可知應(yīng)選A。
19.B本題考查了定積分的性質(zhì)的知識點。
對于選項A,當(dāng)0<x<1時,x3<x2,則。對于選項B,當(dāng)1<x<2時,Inx>(Inx)2,則。對于選項C,對于選讀D,不成立,因為當(dāng)x=0時,1/x無意義。
20.A
21.A由可變上限積分求導(dǎo)公式可知因此選A.
22.A
23.C本題考查的知識點為無窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時,2x3+3x是x的同階無窮小,但不是等價無窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時無窮小盧與無窮小α的階的關(guān)系時,要判定極限
這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.
24.C
25.A
26.C
27.A
28.A解析:
29.C解析:
30.D
31.B本題考查的知識點為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時,由導(dǎo)數(shù)定義可得
32.B
33.B;又∵分母x→0∴x=0是駐點;;即f""(0)=一1<0,∴f(x)在x=0處取極大值
34.C
35.A
36.D本題考查的知識點為重要極限公式或等價無窮小量代換.
解法1
解法2
37.B
38.B
39.C本題考查的知識點為判定函數(shù)的單調(diào)性。
40.C
41.D
42.D
43.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.
44.A
45.D本題考查了曲線的拐點的知識點
46.A解析:
47.B本題考查了等價無窮小量的知識點
48.A
49.A本題考查的知識點為導(dǎo)數(shù)的定義.
50.C由于f'(2)=1,則
51.±1.
本題考查的知識點為判定函數(shù)的間斷點.
52.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點。
53.本題考查的知識點為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
先求出如果兩個偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知
由題設(shè)z=ln(x2+y),令u=x2+y,可得
當(dāng)X2+y≠0時,為連續(xù)函數(shù),因此有
54.由可變上限積分求導(dǎo)公式可知
55.5/256.2xcos(y+x2)本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù)計算.
可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得
57.2cos(x2+y2)(xdx+ydy)58.3e3x
59.
60.ln|x-1|+c
61.6x2
62.(01)(0,1)解析:
63.本題考查的知識點為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域為(-∞,0),(0,+∞),點x=2為其定義區(qū)間(0,+∞)內(nèi)的點,從而知
64.ln(1+x)本題考查的知識點為可變上限積分求導(dǎo).
65.e1/2e1/2
解析:
66.55解析:67.0.
本題考查的知識點為極值的必要條件.
由于y=f(x)在點x=0可導(dǎo),且x=0為f(x)的極值點,由極值的必要條件可知有f(0)=0.68.本題考查的知識點為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。69.本題考查的知識點為判定函數(shù)的間斷點.
僅當(dāng),即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。70.0.
本題考查的知識點為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
71.
72.73.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
74.
75.函數(shù)的定義域為
注意
76.
77.由一階線性微分方程通解公式有
78.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
79.
80.
81.由等價無窮小量的定義可知
82.
83.
84.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
85.
則
86.87.由二重積分物理意義知
88.
89.
列表:
說明
90.
91.
92.93.設(shè),則f(x)=x3+3Ax.將上式兩端在[0,1]上積分,得
因此
本題考查的知識點為兩個:定積分表示一個確定的數(shù)值;計算定積分.
由于定積分存在,因此它表示一個確定的數(shù)值,設(shè),則
f(x)=x3+3Ax.
這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達式,為此將上式兩端在[0,1]上取定積分,可得
得出A的方程,可解出A,從而求得f(x).
本題是考生感到困難的題目,普遍感到無從下手,這是因為不會利用“定積分表示一個數(shù)值”的性質(zhì).
這種解題思路可以推廣到極限、二重積分等問題中.
94.
95.
96.
97.y=xlnx的定義域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育學(xué)通關(guān)提分題庫(考點梳理)
- 2024年度山西省高校教師資格證之高等教育心理學(xué)題庫附答案(基礎(chǔ)題)
- 江蘇開放大學(xué)形考任務(wù)2024年秋包裝設(shè)計060712形成性考核作業(yè)答案
- 2024年商品信用銷售協(xié)議
- 合同法總作業(yè)及參考答案
- 大理石原料買賣化協(xié)議文檔
- 2024年規(guī)范轉(zhuǎn)供電服務(wù)協(xié)議模板
- 2024年施工協(xié)議監(jiān)管要點明細
- 2024年木模板工程承包協(xié)議樣本
- 2024年工廠加工承攬協(xié)議
- 蘇軾生平及創(chuàng)作整理
- 柴油發(fā)電機組應(yīng)急預(yù)案
- 語文《猜猜他是誰》教案
- 繪本:讓誰先吃好呢
- 寬容待人正確交往中小學(xué)生教育主題班會
- 移動通信網(wǎng)絡(luò)運行維護管理規(guī)程
- 龍頭股戰(zhàn)法優(yōu)質(zhì)獲獎?wù)n件
- 小班幼兒語言活動教案100篇
- 中國青瓷藝術(shù)鑒賞智慧樹知到答案章節(jié)測試2023年麗水學(xué)院
- 中廣國際總公司-CR2010衛(wèi)星接收解碼器
- 2023年小學(xué)數(shù)學(xué)手抄報比賽活動總結(jié)(3篇)
評論
0/150
提交評論