版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年湖南省益陽市普通高校對口單招高等數(shù)學一自考真題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.已知
則
=()。
A.
B.
C.
D.
2.A.-cosxB.-ycosxC.cosxD.ycosx
3.A.A.-sinx
B.cosx
C.
D.
4.
5.曲線y=x2+5x+4在點(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
6.下列關(guān)系正確的是()。A.
B.
C.
D.
7.
A.0
B.
C.1
D.
8.
9.
10.
11.A.A.
B.
C.
D.
12.
13.
14.
15.
16.
17.
18.平面π1:x-2y+3x+1=0,π2:2x+y+2=0的位置關(guān)系為()A.垂直B.斜交C.平行不重合D.重合
19.構(gòu)件承載能力不包括()。
A.強度B.剛度C.穩(wěn)定性D.平衡性
20.下面選項中,不屬于牛頓動力學基礎(chǔ)中的定律的是()。
A.慣性定律:無外力作用時,質(zhì)點將保持原來的運動狀態(tài)(靜止或勻速直線運動狀態(tài))
B.運動定律:質(zhì)點因受外力作用而產(chǎn)生的加速度,其方向與力的方向相同,大小與力的大小成正比
C.作用與反作用定律:兩個物體問的作用力,總是大小相等,方向相反,作用線重合,并分別作用在這兩個物體上
D.剛化定律:變形體在某一力系作用下,處于平衡狀態(tài)時,若假想將其剛化為剛體,則其平衡狀態(tài)保持不變
二、填空題(20題)21.22.23.
24.
25.
26.
27.設y=e3x知,則y'_______。
28.
則b__________.
29.函數(shù)f(x)=2x2+4x+2的極小值點為x=_________。
30.y'=x的通解為______.
31.設y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.
32.設z=x2y+siny,=________。
33.
34.
35.設y1(x)、y2(x)是二階常系數(shù)線性微分方程y″+py′+qy=0的兩個線性無關(guān)的解,則它的通解為______.
36.
37.
38.
39.設曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則該切線方程為.40.三、計算題(20題)41.
42.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.求微分方程的通解.46.當x一0時f(x)與sin2x是等價無窮小量,則47.將f(x)=e-2X展開為x的冪級數(shù).48.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.50.證明:51.求曲線在點(1,3)處的切線方程.52.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
53.求微分方程y"-4y'+4y=e-2x的通解.
54.
55.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
56.
57.
58.59.
60.
四、解答題(10題)61.設z=z(x,y)由ez-z+xy=3所確定,求dz。
62.
63.
64.
65.
66.
67.
68.
69.70.五、高等數(shù)學(0題)71.函數(shù)f(x)=xn(a≠0)的彈性函數(shù)為g(x)=_________.
六、解答題(0題)72.
參考答案
1.A
2.C本題考查的知識點為二階偏導數(shù)。由于z=y(tǒng)sinx,因此可知應選C。
3.C本題考查的知識點為基本導數(shù)公式.
可知應選C.
4.C解析:
5.C點(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導數(shù)的幾何意義可知,曲線y=x2+5x+4在點(-1,0)處切線的斜率為3,所以選C.
6.C本題考查的知識點為不定積分的性質(zhì)。
7.A
8.C
9.D
10.D解析:
11.D
12.D
13.C
14.B
15.A
16.B
17.C
18.A本題考查的知識點為兩平面的位置關(guān)系。兩平面的關(guān)系可由平面的法向量n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直。若n1//n2,則兩平面平行,其中當時,兩平面平行,但不重合。當時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1={1,-2,3},n2={2,1,0),n1,n2=0,可知,n1⊥n2,因此π1⊥π2,故選A。
19.D
20.D
21.
22.23.2本題考查的知識點為二重積分的幾何意義.
由二重積分的幾何意義可知,所給二重積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二重積分計算可知
24.225.對已知等式兩端求導,得
26.127.3e3x
28.所以b=2。所以b=2。
29.-1
30.本題考查的知識點為:求解可分離變量的微分方程.
由于y'=x,可知
31.1/(1+ey)本題考查了隱函數(shù)的求導的知識點。32.由于z=x2y+siny,可知。
33.
解析:
34.e35.由二階線性常系數(shù)微分方程解的結(jié)構(gòu)可知所給方程的通解為
其中C1,C2為任意常數(shù).
36.x=-2x=-2解析:
37.
38.
解析:39.y=f(1).
本題考查的知識點有兩個:-是導數(shù)的幾何意義,二是求切線方程.
設切點為(x0,f(x0)),則曲線y=f(x)過該點的切線方程為
y-f(x0)=f(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應有f(x0)=0,故所求切線方程為
y—f(1)=0.
本題中考生最常見的錯誤為:將曲線y=f(x)在點(x0,f(x0))處的切線方程寫為
y-f(x0)=f(x)(x-x0)
而導致錯誤.本例中錯誤地寫為
y-f(1)=f(x)(x-1).
本例中由于f(x)為抽象函數(shù),-些考生不習慣于寫f(1),有些人誤寫切線方程為
y-1=0.40.本題考查的知識點為極限運算.
41.
42.
43.
列表:
說明
44.函數(shù)的定義域為
注意
45.46.由等價無窮小量的定義可知
47.
48.
49.
50.
51.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
52.由二重積分物理意義知
53.解:原方程對應的齊次方程為y"-4y'+4y=0,
54.
55.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能安防及弱電系統(tǒng)2025年度施工合同
- 2025年天津貨運從業(yè)資格證題
- 2025年廊坊貨運從業(yè)資格證在哪里練題
- 土石方裝卸作業(yè)2025年度物流服務合同3篇
- 二零二五年度出租房衛(wèi)生應急預案與租戶安全協(xié)議4篇
- 二零二五版教育合同:國防獎學金項目實施與管理協(xié)議6篇
- 事業(yè)單位市場營銷合作協(xié)議(2024年修訂版)3篇
- 二零二五年高性能混凝土運輸及安裝合同模板3篇
- 二零二五年度彩鋼瓦產(chǎn)品售后維修及保養(yǎng)協(xié)議3篇
- 2025年度窗簾行業(yè)人才培養(yǎng)與就業(yè)服務合同3篇
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質(zhì)量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學真題試卷(含答案)
- 高中學校開學典禮方案
- 內(nèi)審檢查表完整版本
- 3級人工智能訓練師(高級)國家職業(yè)技能鑒定考試題及答案
- 孤殘兒童護理員技能鑒定考試題庫(含答案)
評論
0/150
提交評論