2022年浙江省紹興市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022年浙江省紹興市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022年浙江省紹興市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022年浙江省紹興市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022年浙江省紹興市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年浙江省紹興市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.

2.

3.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)

B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0

C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)

D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)

4.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.

B.

C.

D.

5.A.A.小于0B.大于0C.等于0D.不確定

6.

7.方程x2+y2-z2=0表示的二次曲面是()。

A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面

8.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

9.

10.A.A.

B.

C.

D.

11.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計算時,用以考慮縱向彎曲彎曲影響的系數(shù)是()。

A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)

12.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3

13.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

14.()。A.

B.

C.

D.

15.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()

A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)

16.A.A.

B.

C.

D.

17.

18.A.3B.2C.1D.0

19.

20.A.A.arctanx2

B.2xarctanx

C.2xarctanx2

D.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為________。

30.設(shè)f(x)=esinx,則=________。

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

三、計算題(20題)41.

42.

43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

44.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.

45.

46.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則

47.

48.求微分方程的通解.

49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

50.求曲線在點(diǎn)(1,3)處的切線方程.

51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

53.證明:

54.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.

58.

59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

60.將f(x)=e-2X展開為x的冪級數(shù).

四、解答題(10題)61.

62.

63.設(shè)y=xcosx,求y'.

64.的面積A。

65.

66.

67.

68.求微分方程y"+4y=e2x的通解。

69.

70.

五、高等數(shù)學(xué)(0題)71.求方程y一3y+2y=0的通解。

六、解答題(0題)72.

參考答案

1.C

2.D

3.B

4.C

5.C

6.D解析:

7.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.

8.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

9.A

10.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計算.

11.D

12.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.

13.C選項A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項B中,在x=0處不存在,即在x=0處不可導(dǎo);選項C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).

14.C

15.A對于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).

16.B本題考查的知識點(diǎn)為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時,由導(dǎo)數(shù)定義可得

17.D

18.A

19.C

20.C

21.π/8

22.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)

23.33解析:

24.11解析:

25.y=f(0)

26.0

27.(-22)(-2,2)解析:

28.y=f(0)

29.因為D:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。

30.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。

31.x=2x=2解析:

32.12dx+4dy.

本題考查的知識點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

33.x=-2x=-2解析:

34.

本題考查的知識點(diǎn)為定積分運(yùn)算.

35.

36.2

37.arctanx+C

38.

39.

解析:本題考查的知識點(diǎn)為不定積分的湊微分法.

40.

解析:

41.

42.

43.函數(shù)的定義域為

注意

44.

45.

46.由等價無窮小量的定義可知

47.

48.

49.

50.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

51.

列表:

說明

52.由二重積分物理意義知

53.

54.

55.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

56.

57.由一階線性微分方程通解公式有

58.

59.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論