2022年江西省吉安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年江西省吉安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年江西省吉安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年江西省吉安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年江西省吉安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年江西省吉安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.A.-cosxB.-ycosxC.cosxD.ycosx

3.A.A.2/3B.3/2C.2D.3

4.

5.

6.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

7.A.A.4πB.3πC.2πD.π

8.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

9.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無(wú)水平漸近線,又無(wú)鉛直漸近線

10.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().

A.2sin2x

B.-2sin2x

C.sin2x

D.-sin2x

11.

12.

13.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)

14.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)

15.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

16.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4

17.A.1/3B.1C.2D.3

18.A.A.

B.

C.

D.

19.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

20.

二、填空題(20題)21.

22.

23.設(shè)z=xy,則dz=______.

24.

25.

26.

27.設(shè)y=xe,則y'=_________.

28.

29.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________

30.

31.32.設(shè),則y'=______.33.過(guò)原點(diǎn)(0,0,0)且垂直于向量(1,1,1)的平面方程為_(kāi)_______。34.過(guò)點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為_(kāi)_____.35.

36.

37.

38.

39.

40.設(shè)y=sin2x,則y'______.三、計(jì)算題(20題)41.42.求曲線在點(diǎn)(1,3)處的切線方程.43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.44.證明:45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.求微分方程的通解.49.

50.

51.

52.

53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

55.求微分方程y"-4y'+4y=e-2x的通解.

56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

57.

58.59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).四、解答題(10題)61.

62.

63.計(jì)算64.

65.

66.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.

67.求y=xlnx的極值與極值點(diǎn).

68.

69.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).

70.求曲線的漸近線.五、高等數(shù)學(xué)(0題)71.

且k≠0則k=________。

六、解答題(0題)72.

參考答案

1.D

2.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

3.A

4.B

5.D

6.C

7.A

8.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

9.A

10.B由復(fù)合函數(shù)求導(dǎo)法則,可得

故選B.

11.D解析:

12.A

13.B

14.D本題考查了判斷函數(shù)極限的存在性的知識(shí)點(diǎn).

極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).

15.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

16.A

17.D解法1由于當(dāng)x一0時(shí),sinax~ax,可知故選D.

解法2故選D.

18.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).

19.C

20.C

21.(-22)(-2,2)解析:

22.

23.yxy-1dx+xylnxdy

24.1/24

25.2

26.

27.(x+1)ex本題考查了函數(shù)導(dǎo)數(shù)的知識(shí)點(diǎn)。

28.(1+x)ex(1+x)ex

解析:

29.

30.(12)(01)31.12dx+4dy.

本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

32.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

33.x+y+z=034.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.

所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.

35.2本題考查了定積分的知識(shí)點(diǎn)。

36.

37.本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

38.

39.40.2sinxcosx本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.

41.42.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

43.由二重積分物理意義知

44.

45.

列表:

說(shuō)明

46.

47.

48.

49.

50.

51.

52.

53.

54.由等價(jià)無(wú)窮小量的定義可知

55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

56.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%57.由一階線性微分方程通解公式有

58.

59.函數(shù)的定義域?yàn)?/p>

注意

60.

61.

62.

63.本題考查的知識(shí)點(diǎn)為計(jì)算廣義積分.

計(jì)算廣義積分應(yīng)依廣義積分收斂性定義,將其轉(zhuǎn)化為定積分與極限兩種運(yùn)算.即

64.

65.

66.注:本題關(guān)鍵是確定積分區(qū)間,曲線為y2=(x-1)3.由y2≥0知x-1≥0即x≥1,又與直線x=2所圍成的圖形,所以積分區(qū)間為[1,2].67.y=x1nx的定義域?yàn)閤>0,

68.

69.

70.由于

可知y=0為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論