版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是()。A.
B.
C.
D.
3.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確
4.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
5.()。A.-2B.-1C.0D.2
6.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
7.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
8.()。A.
B.
C.
D.
9.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營單值進(jìn)行分類的。
A.業(yè)務(wù)增長率和相對競爭地位
B.業(yè)務(wù)增長率和行業(yè)市場前景
C.經(jīng)營單位的競爭能力與相對競爭地位
D.經(jīng)營單位的競爭能力與市場前景吸引力
10.
11.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
12.
13.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
14.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
15.
16.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
17.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
18.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
19.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
20.
二、填空題(20題)21.
22.
23.曲線y=x3-6x的拐點坐標(biāo)為______.
24.
25.
26.
27.
28.
29.設(shè)y=lnx,則y'=_________。
30.
31.
32.
33.設(shè)y=cos3x,則y'=__________。
34.
35.
36.
37.設(shè)y=2x2+ax+3在點x=1取得極小值,則a=_____。
38.
39.
40.
三、計算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
42.求微分方程的通解.
43.求曲線在點(1,3)處的切線方程.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
45.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
46.證明:
47.
48.將f(x)=e-2X展開為x的冪級數(shù).
49.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
51.
52.
53.
54.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
56.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
57.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.
60.
四、解答題(10題)61.將展開為x的冪級數(shù).
62.
63.證明:ex>1+x(x>0)
64.設(shè)區(qū)域D為:
65.
66.
67.設(shè)f(x)為連續(xù)函數(shù),且
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
=________。
六、解答題(0題)72.
參考答案
1.A解析:
2.C
3.D
4.B
5.A
6.A
7.B
8.A
9.D解析:政策指導(dǎo)矩陣根據(jù)對市場前景吸引力和經(jīng)營單位的相對競爭能力的劃分,可把企業(yè)的經(jīng)營單位分成九大類。
10.B
11.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時,cosξ=0,因此選C。
12.A
13.C
14.C本題考查的知識點為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域為(-∞,+∞)。
當(dāng)x>0時,y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時,y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
15.B解析:
16.D本題考查的知識點為偏導(dǎo)數(shù)的運算。由z=sin(xy2),知可知應(yīng)選D。
17.A
18.D本題考查了函數(shù)的微分的知識點。
19.C本題考查了萊布尼茨公式的知識點.
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
20.B解析:
21.2yex+x
22.
23.(0,0)本題考查的知識點為求曲線的拐點.
依求曲線拐點的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(xk,f(xk)為曲線y=f(x)的拐點.
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時,y=0.
當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(0,0)為曲線y=x3-6x的拐點.
本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點的概念不清楚.拐點的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點稱之為曲線的拐點.其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點為(x0,f(x0)).
注意極值點與拐點的不同之處!
24.y+3x2+x
25.
26.
27.
28.
29.1/x
30.
31.
32.-2y-2y解析:
33.-3sin3x
34.
35.
36.
37.
38.
本題考查的知識點為函數(shù)商的求導(dǎo)運算.
考生只需熟記導(dǎo)數(shù)運算的法則
39.
40.(-33)(-3,3)解析:
41.
42.
43.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
44.函數(shù)的定義域為
注意
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
46.
47.
48.
49.
50.由二重積分物理意義知
51.
52.
則
53.
54.
55.
列表:
說明
56.由等價無窮小量的定義可知
57.
58.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
59.由一階線性微分方程通解公式有
60.
61.
;本題考查的知識點為將初等函數(shù)展開為x的冪級數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個標(biāo)準(zhǔn)展開式:,ex,sinx,cosx,ln(1+x)對于x的冪級數(shù)展開式.
62.
63.
64.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識點為二重積分的計算(極坐標(biāo)系).
如果積分區(qū)域為圓域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計算較方便.
使用極坐標(biāo)計算二重積分時,要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見的錯誤為:
被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時常見的錯誤,考生務(wù)必要注意.
65.
66.
67.設(shè),則f(x)=x3+3Ax.將上式兩端在[0,1]上積分,得
因此
本題考查的知識點為兩個:定積分表示一個確定的數(shù)值;計算定積分.
由于定積分存在,因此它表示一個確定的數(shù)值,設(shè),則
f(x)=x3+3Ax.
這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得
得出A的方程,可解出A,從而求得f(x).
本題是考生感到困難的題目,普遍感到無從下手,這是因為不會利用“定積分表示一個數(shù)值”的性質(zhì).
這種解題思路可以推廣到極限、二重積分等問題中.
68.
69
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 濱州學(xué)院《邏輯學(xué)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院《裝飾圖案》2023-2024學(xué)年第一學(xué)期期末試卷
- 建筑業(yè)農(nóng)民工合同標(biāo)準(zhǔn)版
- 玻璃清洗合同
- 車輛道閘系統(tǒng)協(xié)議模板合同
- 軍訓(xùn)挑戰(zhàn)心得體會
- 人才尋訪服務(wù)合同
- 婚禮策劃方案范文錦集九篇
- 北京政法職業(yè)學(xué)院《微機原理與應(yīng)用A(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年高壓鼠籠電機起動器項目可行性研究報告
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗方法第1部分:衛(wèi)星定位
- 1古詩文理解性默寫(教師卷)
- 廣東省廣州市越秀區(qū)2021-2022學(xué)年九年級上學(xué)期期末道德與法治試題(含答案)
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測卷(含答案)
- 在線教育平臺合作合同助力教育公平
- 工地鋼板短期出租合同模板
- 女排精神課件教學(xué)課件
- 電力電子技術(shù)(廣東工業(yè)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- 2024年中國移動甘肅公司招聘筆試參考題庫含答案解析
- 風(fēng)動送樣手冊
評論
0/150
提交評論