2022年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

4.A.A.

B.

C.

D.

5.A.dx+dy

B.

C.

D.2(dx+dy)

6.

7.

8.

9.

10.A.A.2/3B.3/2C.2D.3

11.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階無(wú)窮小,但不是等價(jià)無(wú)窮小D.低階無(wú)窮小

12.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

13.A.A.

B.

C.

D.

14.A.-1

B.0

C.

D.1

15.

A.

B.

C.

D.

16.

17.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4

18.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

19.

20.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

二、填空題(20題)21.

22.

23.

24.

25.廣義積分.

26.

27.

28.

29.

30.

31.

32.

33.34.

35.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。

36.

37.

38.

39.設(shè)z=ln(x2+y),則全微分dz=__________。

40.

三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.

42.

43.

44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

46.證明:

47.求微分方程y"-4y'+4y=e-2x的通解.

48.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

50.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

52.

53.

54.

55.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.

58.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

59.

60.求微分方程的通解.

四、解答題(10題)61.

62.

63.求方程y''2y'+5y=ex的通解.

64.

65.

66.

67.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.

________.

六、解答題(0題)72.

參考答案

1.B

2.D解析:

3.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

4.D本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).

當(dāng)f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時(shí),

因此應(yīng)選D.

5.C

6.B

7.C解析:

8.B解析:

9.B

10.A

11.C本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無(wú)窮小,但不是等價(jià)無(wú)窮小,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小盧與無(wú)窮小α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

12.B

13.B

14.C

15.C

16.D

17.C

18.D

19.D解析:

20.D

21.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.

通常求解的思路為:

22.2.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

能利用洛必達(dá)法則求解.

如果計(jì)算極限,應(yīng)該先判定其類(lèi)型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.

檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.

23.1/2

24.-1本題考查了洛必達(dá)法則的知識(shí)點(diǎn).

25.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

26.

27.2

28.

29.

30.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。

31.e.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

32.

33.4π

34.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

f'(x)=(x2)'=2x,

f"(x)=(2x)'=2.

35.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。

36.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

37.1+2ln2

38.e2

39.

40.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)為奇函數(shù),因此

41.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

42.由一階線性微分方程通解公式有

43.

44.

45.

46.

47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

48.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

49.

列表:

說(shuō)明

50

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論