版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年廣東省梅州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
4.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
5.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績效顯著,近來被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點仍以技術(shù)工作為主,以自身為榜樣帶動下級
C.以抓管理工作為主,同時參與部分技術(shù)工作,以增強與下級的溝通和了解
D.在抓好技術(shù)工作的同時,做好管理工作
6.
7.
8.A.A.
B.
C.
D.
9.
10.
11.
12.
13.曲線y=x2+5x+4在點(-1,0)處切線的斜率為
A.2B.-2C.3D.-314.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
15.
16.
17.
18.A.e2
B.e-2
C.1D.0
19.
A.
B.
C.
D.
20.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
二、填空題(20題)21.
22.23.過坐標(biāo)原點且與平面2x-y+z+1=0平行的平面方程為______.
24.
25.
26.27.
28.
29.
30.
31.32.冪級數(shù)的收斂半徑為______.
33.
34.35.36.
37.函數(shù)在x=0連續(xù),此時a=______.
38.
39.40.三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
44.
45.將f(x)=e-2X展開為x的冪級數(shù).
46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
47.
48.求曲線在點(1,3)處的切線方程.49.
50.
51.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.53.求微分方程的通解.54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.56.57.證明:
58.求微分方程y"-4y'+4y=e-2x的通解.
59.60.四、解答題(10題)61.
62.
63.
64.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。
65.設(shè)ex-ey=siny,求y’
66.
67.y=xlnx的極值與極值點.
68.
69.
70.求函數(shù)y=xex的極小值點與極小值。五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.B
2.B
3.DA,∫1+∞xdx==∞發(fā)散;
4.C
5.C
6.D
7.A
8.A
9.D
10.C解析:
11.A
12.D解析:
13.C解析:
14.C本題考查的知識點為判定函數(shù)的單調(diào)性。
15.C
16.B解析:
17.C
18.A
19.C本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
20.C21.0.
本題考查的知識點為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
22.
23.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
24.
25.-3sin3x-3sin3x解析:26.0.
本題考查的知識點為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項情形
因此收斂半徑為0.
27.
28.
29.
30.131.1.
本題考查的知識點為二元函數(shù)的極值.
可知點(0,0)為z的極小值點,極小值為1.32.0本題考查的知識點為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項情形
因此收斂半徑為0.
33.00解析:
34.本題考查的知識點為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域為(-∞,0),(0,+∞),點x=2為其定義區(qū)間(0,+∞)內(nèi)的點,從而知
35.1/6
本題考查的知識點為計算二重積分.
36.
本題考查的知識點為二階常系數(shù)線性微分方程的求解.
37.0
38.
39.
40.本題考查的知識點為定積分的換元法.
41.
42.由等價無窮小量的定義可知43.函數(shù)的定義域為
注意
44.
45.
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
47.
則
48.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
49.由一階線性微分方程通解公式有
50.
51.
52.
列表:
說明
53.54.由二重積分物理意義知
55.
56.
57.
58.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
59.
60.
61.
62.
63.
64.
65.
66.
67.y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當(dāng)0<x<e-1時y'<0;當(dāng)e-1<x時y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代科技助力白水泥行業(yè)財務(wù)風(fēng)險管理
- 衛(wèi)浴潔具國慶節(jié)活動方案
- 環(huán)境藝術(shù)設(shè)計與室內(nèi)設(shè)計的審美互動
- 生產(chǎn)工藝流程中的質(zhì)量控制與安全管理
- 現(xiàn)代服務(wù)業(yè)在商業(yè)地產(chǎn)中的價值挖掘
- 物流技術(shù)與管理教育的新模式
- Unit 4 Plants around us Lesson 6(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 7《可愛的動物》(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治一年級下冊
- Unit 2 Whats your name (Story time)(說課稿)-2024-2025學(xué)年譯林版(三起)(2024)英語三年級上冊001
- Unit 4 A glimpse of the future 說課稿-2023-2024學(xué)年高二下學(xué)期英語外研版(2019)選擇性必修第三冊001
- 輸變電工程監(jiān)督檢查標(biāo)準(zhǔn)化清單-質(zhì)監(jiān)站檢查
- 2024-2025學(xué)年北京海淀區(qū)高二(上)期末生物試卷(含答案)
- 【超星學(xué)習(xí)通】馬克思主義基本原理(南開大學(xué))爾雅章節(jié)測試網(wǎng)課答案
- 人教版八年級上冊地理2024-2025學(xué)年八年級上冊地理第一章 從世界看中國 測試卷(一)(含答案)
- 2024年中國工業(yè)涂料行業(yè)發(fā)展現(xiàn)狀、市場前景、投資方向分析報告(智研咨詢發(fā)布)
- 化工企業(yè)重大事故隱患判定標(biāo)準(zhǔn)培訓(xùn)考試卷(后附答案)
- 工傷賠償授權(quán)委托書范例
- 食堂餐具炊具供貨服務(wù)方案
- 員工安全健康手冊
- 自然科學(xué)基礎(chǔ)(小學(xué)教育專業(yè))全套教學(xué)課件
- 華為客服制度
評論
0/150
提交評論