版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年湖南省常德市成考專升本高等數(shù)學一自考模擬考試(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.0B.2C.2f(-1)D.2f(1)
2.級數(shù)(k為非零正常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關
3.
4.擺動導桿機構如圖所示,已知φ=ωt(ω為常數(shù)),O點到滑竿CD間的距離為l,則關于滑竿上銷釘A的運動參數(shù)計算有誤的是()。
A.運動方程為x=ltan∮=ltanωt
B.速度方程為
C.加速度方程
D.加速度方程
5.
6.設函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
7.設函數(shù)y=f(x)的導函數(shù),滿足f(-1)=0,當x<-1時,f(x)<0;當x>-1時,f(x)>0.則下列結論肯定正確的是().
A.x=-1是駐點,但不是極值點B.x=-1不是駐點C.x=-1為極小值點D.x=-1為極大值點
8.A.A.1
B.
C.
D.1n2
9.下列命題中正確的有().
10.設y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
11.
12.
13.
14.
A.2B.1C.1/2D.0
15.設un≤aυn(n=1,2,…)(a>0),且收斂,則()A.必定收斂B.必定發(fā)散C.收斂性與a有關D.上述三個結論都不正確
16.設y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
17.設y=sin2x,則y'=A.A.2cosxB.cos2xC.2cos2xD.cosx
18.設曲線y=x-ex在點(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
19.A.A.
B.
C.
D.
20.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
21.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
22.
23.
24.A.A.0B.1C.2D.任意值
25.
26.
27.下列結論正確的有A.若xo是f(x)的極值點,則x0一定是f(x)的駐點
B.若xo是f(x)的極值點,且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點,則x0一定是f(xo)的極值點
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
28.當x→0時,x2是x-ln(1+x)的().
A.較高階的無窮小B.等價無窮小C.同階但不等價無窮小D.較低階的無窮小
29.
30.設函數(shù)y=f(x)二階可導,且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
31.極限等于().A.A.e1/2B.eC.e2D.1
32.
33.
34.()。A.收斂且和為0
B.收斂且和為α
C.收斂且和為α-α1
D.發(fā)散
35.
36.
37.
38.A.3B.2C.1D.1/239.設y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
40.
41.f(x)在x=0有二階連續(xù)導數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對42.設函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C
43.設y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
44.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
45.
46.圖示結構中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強度計算有誤的一項為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應力50MPaD.2桿壓應力43.3MPa47.A.1B.0C.2D.1/2
48.前饋控制、同期控制和反饋控制劃分的標準是()
A.按照時機、對象和目的劃分B.按照業(yè)務范圍劃分C.按照控制的順序劃分D.按照控制對象的全面性劃分
49.設x=1為y=x3-ax的極小值點,則a等于().
A.3
B.
C.1
D.1/3
50.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
二、填空題(20題)51.
52.
53.y'=x的通解為______.54.55.56.
57.
58.設y=5+lnx,則dy=________。59.微分方程y"+y=0的通解為______.
60.設f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。
61.62.
63.
64.
65.
66.設z=ln(x2+y),則全微分dz=__________。
67.
68.設,則f'(x)=______.69.
70.
三、計算題(20題)71.72.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.73.
74.75.
76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
79.求微分方程y"-4y'+4y=e-2x的通解.
80.證明:81.求曲線在點(1,3)處的切線方程.82.求微分方程的通解.83.當x一0時f(x)與sin2x是等價無窮小量,則
84.
85.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.87.將f(x)=e-2X展開為x的冪級數(shù).88.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
89.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
90.
四、解答題(10題)91.
92.
93.
94.95.
96.
97.
98.
99.設z=x2ey,求dz。
100.五、高等數(shù)學(0題)101.求微分方程y+2xy=xe-x2滿足y|x=0=1的特解。
六、解答題(0題)102.
參考答案
1.C本題考查了定積分的性質(zhì)的知識點。
2.A本題考查的知識點為無窮級數(shù)的收斂性.
由于收斂,可知所給級數(shù)絕對收斂.
3.C解析:
4.C
5.A
6.C
7.C本題考查的知識點為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點,當x<-1時f(x)<0;當x>-1時,
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點,故應選C.
8.C本題考查的知識點為定積分運算.
因此選C.
9.B解析:
10.B如果y1,y2這兩個特解是線性無關的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設中沒有指出是否線性無關,所以可能是通解,也可能不是通解,故選B。
11.D解析:
12.A解析:
13.C
14.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).
15.D由正項級數(shù)的比較判定法知,若un≤υn,則當收斂時,也收斂;若也發(fā)散,但題設未交待un與υn的正負性,由此可分析此題選D。
16.C
17.C由鏈式法則可得(sin2x)'=cos2x*(2x)'=2cos2x,故選C。
18.C本題考查的知識點為導數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導數(shù)的幾何意義可知,曲線y=x-ex在點(0,-1)處切線斜率為0,因此選C.
19.D
20.DA,∫1+∞xdx==∞發(fā)散;
21.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
22.B
23.C解析:
24.B
25.A解析:
26.B解析:
27.B
28.C解析:本題考查的知識點為無窮小階的比較.
由于
可知當x→0時,x2與x-ln(1+x)為同階但不等價無窮小.故應選C.
29.B
30.B
31.C本題考查的知識點為重要極限公式.
由于,可知應選C.
32.D
33.C解析:
34.C
35.A
36.C
37.C解析:
38.B,可知應選B。
39.B本題考查的知識點為線性常系數(shù)微分方程解的結構.
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個解,由解的結構定理可知C1y1+C2y2為所給方程的解,因此應排除D.又由解的結構定理可知,當y1,y2線性無關時,C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應該選B.
本題中常見的錯誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結構定理中的條件所導致的錯誤.解的結構定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個線性無關的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結構定理知C1y1+C2y2為方程的解,因此應選B.
40.A
41.B;又∵分母x→0∴x=0是駐點;;即f""(0)=一1<0,∴f(x)在x=0處取極大值
42.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。
43.D南微分的基本公式可知,因此選D.
44.A由不定積分的性質(zhì)“先積分后求導,作用抵消”可知應選A.
45.B
46.C
47.C
48.A解析:根據(jù)時機、對象和目的來劃分,控制可分為前饋控制、同期控制和反饋控制。
49.A解析:本題考查的知識點為判定極值的必要條件.
由于y=x3-ax,y'=3x2-a,令y'=0,可得
由于x=1為y的極小值點,因此y'|x=1=0,從而知
故應選A.
50.D51.2xsinx2;本題考查的知識點為可變上限積分的求導.
52.2
53.本題考查的知識點為:求解可分離變量的微分方程.
由于y'=x,可知
54.55.e-1/2
56.
本題考查的知識點為微分的四則運算.
注意若u,v可微,則
57.
58.59.y=C1cosx+C2sinx本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.
60.161.6.
本題考查的知識點為無窮小量階的比較.
62.0.
本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.
通常求解的思路為:
63.y=xe+Cy=xe+C解析:
64.
65.x=-3x=-3解析:
66.
67.1/3
68.本題考查的知識點為復合函數(shù)導數(shù)的運算.
69.
本題考查的知識點為導數(shù)的四則運算.
70.2yex+x
71.
72.
73.
則
74.75.由一階線性微分方程通解公式有
76.函數(shù)的定義域為
注意
77.
78.
列表:
說明
79.解:原方程對應的齊次方程為y"-4y'+4y=0,
80.
81.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
82.83.由等價無窮小量的定義可知
84.
85.由二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度專業(yè)牧場代牧服務標準合同4篇
- 2025年度臨時停車場帳篷搭建施工合同范本3篇
- 2024物流包裝與裝卸合同
- 2025年度智慧家居產(chǎn)品研發(fā)承包經(jīng)營合同書范文4篇
- 2025年度桉樹種植與生物質(zhì)能利用技術研發(fā)合同3篇
- 2025年個人汽車抵押貸款抵押權設立及轉(zhuǎn)讓合同4篇
- 2025年度住宅小區(qū)地下車庫車位使用權購買合同范本4篇
- 2025年度文化產(chǎn)業(yè)園開發(fā)承包合同股東內(nèi)部合作協(xié)議4篇
- 2024年甲乙雙方石材供需合同
- 2025年度新能源項目地質(zhì)鉆孔工程承包協(xié)議4篇
- 【傳媒大學】2024年新營銷
- 乳腺癌的綜合治療及進展
- 【大學課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025屆廣東省佛山市高三上學期普通高中教學質(zhì)量檢測(一模)英語試卷(無答案)
- 自身免疫性腦炎課件
- 人力資源管理各崗位工作職責
- 信陽農(nóng)林學院《新媒體傳播學》2023-2024學年第一學期期末試卷
- 2024建筑公司年終工作總結(32篇)
- 信息安全意識培訓課件
- 2024年項目投資計劃書(三篇)
- 配電安規(guī)課件
評論
0/150
提交評論