2022-2023學(xué)年江蘇省無錫市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年江蘇省無錫市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年江蘇省無錫市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年江蘇省無錫市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年江蘇省無錫市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年江蘇省無錫市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.

2.設(shè)z=y2x,則等于().A.2xy2x-11

B.2y2x

C.y2xlny

D.2y2xlny

3.

4.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定5.

A.

B.

C.

D.

6.7.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

8.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

9.

A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在

10.

11.A.2B.1C.1/2D.-2

12.

13.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny

B.3y3xlny

C.3xy3x

D.3xy3x-1

14.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

15.建立共同愿景屬于()的管理觀念。

A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理

16.

17.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()

A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值18.A.A.2B.1C.1/2D.019.級數(shù)(k為非零正常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

20.

二、填空題(20題)21.

22.

23.24.微分方程exy'=1的通解為______.

25.

26.

27.

28.

29.

30.31.微分方程y"=y的通解為______.

32.

33.

34.

35.

36.

37.

38.

39.

40.三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.43.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

44.45.求微分方程的通解.46.47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.48.

49.將f(x)=e-2X展開為x的冪級數(shù).

50.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

51.

52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

53.

54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.

56.證明:57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則58.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

59.求微分方程y"-4y'+4y=e-2x的通解.

60.四、解答題(10題)61.

62.求∫arctanxdx。

63.

64.求通過點(diǎn)(1,2)的曲線方程,使此曲線在[1,x]上形成的曲邊梯形面積的值等于此曲線弧終點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y乘積的2倍減去4。

65.

66.

67.

68.

69.70.五、高等數(shù)學(xué)(0題)71.設(shè)生產(chǎn)某產(chǎn)品利潤L(x)=5000+x一0.0001x2百元[單位:件],問生產(chǎn)多少件時(shí)利潤最大,最大利潤是多少?

六、解答題(0題)72.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。

參考答案

1.B

2.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.

z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有

可知應(yīng)選D.

3.A

4.C

5.B本題考查的知識點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

6.D

7.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

8.C本題考查的知識點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

9.B

10.D

11.A本題考查了等價(jià)無窮小的代換的知識點(diǎn)。

12.C

13.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

z=y3x

是關(guān)于y的冪函數(shù),因此

故應(yīng)選D.

14.C本題考查的知識點(diǎn)為定積分的對稱性.

由定積分的對稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

15.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。

16.C

17.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.

18.D

19.A本題考查的知識點(diǎn)為無窮級數(shù)的收斂性.

由于收斂,可知所給級數(shù)絕對收斂.

20.A解析:21.本題考查的知識點(diǎn)為冪級數(shù)的收斂區(qū)間。由于所給級數(shù)為不缺項(xiàng)情形,

22.

23.

本題考查的知識點(diǎn)為二重積分的計(jì)算.

24.y=-e-x+C本題考查的知識點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

由于方程為exy'=1,先變形為

變量分離dy=e-xdx.

兩端積分

為所求通解.

25.2

26.1/2本題考查了對∞-∞型未定式極限的知識點(diǎn),

27.00解析:

28.1/(1-x)2

29.11解析:30.2本題考查的知識點(diǎn)為二重積分的幾何意義.

由二重積分的幾何意義可知,所給二重積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知

31.y'=C1e-x+C2ex

;本題考查的知識點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

將方程變形,化為y"-y=0,

特征方程為r2-1=0;

特征根為r1=-1,r2=1.

因此方程的通解為y=C1e-x+C2ex.

32.

解析:本題考查的知識點(diǎn)為不定積分的湊微分法.

33.1.

本題考查的知識點(diǎn)為反常積分,應(yīng)依反常積分定義求解.

34.3e3x3e3x

解析:

35.

本題考查的知識點(diǎn)為微分的四則運(yùn)算.

注意若u,v可微,則

36.3

37.

38.x-arctanx+C

39.1/440.141.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

42.

43.

44.

45.

46.47.由二重積分物理意義知

48.

49.

50.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

51.52.函數(shù)的定義域?yàn)?/p>

注意

53.

54.

列表:

說明

55.由一階線性微分方程通解公式有

56.

57.由等價(jià)無窮小量的定義可知

58.

59.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

60.

61.

62.

63.

64.

65.

66.

67.

68.69.利用洛必達(dá)法則原式,接下去有兩種解法:解法1利用等價(jià)無窮小代換.

解法2利用洛必達(dá)法則.

本題考查的知識點(diǎn)為兩個(gè):“”型極限和可變上限積分的求導(dǎo).

對于可變上(下)限積分形式的極限,如果為“”型或“”型,通常利用洛必達(dá)法則求解,將其轉(zhuǎn)化為不含可變上(下)限積分形式的極限.

70.

71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論