線性代數(shù)-11.第一章_第1頁
線性代數(shù)-11.第一章_第2頁
線性代數(shù)-11.第一章_第3頁
線性代數(shù)-11.第一章_第4頁
線性代數(shù)-11.第一章_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

三、n階行列式的定義三階行列式說明(1)三階行列式共有項(xiàng),即項(xiàng).(2)每項(xiàng)都是位于不同行不同列的三個(gè)元素的乘積.第二節(jié)n階行列式的定義(II)(3)每項(xiàng)的正負(fù)號(hào)都取決于位于不同行不同列的三個(gè)元素的下標(biāo)排列.例如列標(biāo)排列的逆序數(shù)為列標(biāo)排列的逆序數(shù)為偶排列奇排列定義2.1說明1、行列式是一種特定的算式,它是根據(jù)求解方程個(gè)數(shù)和未知量個(gè)數(shù)相同的一次方程組的需要而定義的;2、階行列式是項(xiàng)的代數(shù)和;3、階行列式的每項(xiàng)都是位于不同行、不同列個(gè)元素的乘積;4、一階行列式不要與絕對(duì)值記號(hào)相混淆;5、的符號(hào)為例2

計(jì)算上三角行列式分析展開式中項(xiàng)的一般形式是所以不為零的項(xiàng)只有解例同理可得下三角行列式例3

證明對(duì)角行列式證明第一式是顯然的,下面證第二式.若記則依行列式定義證畢四、n階行列式定義的其它形式其中為行標(biāo)排列的逆序數(shù).證明按行列式定義有定理2.2

n階行列式也可定義為記對(duì)于D中任意一項(xiàng)總有且僅有中的某一項(xiàng)與之對(duì)應(yīng)并相等;反之,對(duì)于中任意一項(xiàng)也總有且僅有D中的某一項(xiàng)與之對(duì)應(yīng)并相等,于是D與中的項(xiàng)可以一一對(duì)應(yīng)并相等,從而例

試判斷和是否都是六階行列式中的項(xiàng).解下標(biāo)的逆序數(shù)為所以是六階行列式中的項(xiàng).定理2.3

n階行列式也可定義為下標(biāo)的逆序數(shù)為所以不是六階行列式中的項(xiàng).例2

在六階行列式中,下列兩項(xiàng)各應(yīng)帶什么符號(hào).解431265的逆序數(shù)為所以前邊應(yīng)帶正號(hào).行標(biāo)排列341562的逆序數(shù)為列標(biāo)排列234165的逆序數(shù)為所以前邊應(yīng)帶正號(hào).例3

用行列式的定義計(jì)算解1、行列式是一種特定的算式,它是根據(jù)求解方程個(gè)數(shù)和未知量個(gè)數(shù)相同的一次方程組的需要而定義的.2、階行列式共有項(xiàng),每項(xiàng)都是位于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論