




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DataMining:DataLectureNotesforChapter2IntroductiontoDataMiningbyTan,Steinbach,KumarWhatisData?CollectionofdataobjectsandtheirattributesAnattributeisapropertyorcharacteristicofanobjectExamples:eyecolorofaperson,temperature,etc.Attributeisalsoknownasvariable,field,characteristic,orfeatureAcollectionofattributesdescribeanobjectObjectisalsoknownasrecord,point,case,sample,entity,orinstanceAttributesObjectsAttributeValuesAttributevaluesarenumbersorsymbolsassignedtoanattributeDistinctionbetweenattributesandattributevaluesSameattributecanbemappedtodifferentattributevaluesExample:heightcanbemeasuredinfeetormetersDifferentattributescanbemappedtothesamesetofvaluesExample:AttributevaluesforIDandageareintegersButpropertiesofattributevaluescanbedifferentIDhasnolimitbutagehasamaximumandminimumvalueMeasurementofLengthThewayyoumeasureanattributeissomewhatmaynotmatchtheattributesproperties.TypesofAttributesTherearedifferenttypesofattributesNominalExamples:IDnumbers,eyecolor,zipcodesOrdinalExamples:rankings(e.g.,tasteofpotatochipsonascalefrom1-10),grades,heightin{tall,medium,short}IntervalExamples:calendardates,temperaturesinCelsiusorFahrenheit.RatioExamples:temperatureinKelvin,length,time,countsPropertiesofAttributeValuesThetypeofanattributedependsonwhichofthefollowingpropertiesitpossesses:Distinctness: = Order: <> Addition: +- Multiplication: */Nominalattribute:distinctnessOrdinalattribute:distinctness&orderIntervalattribute:distinctness,order&additionRatioattribute:all4propertiesAttributeTypeDescriptionExamplesOperationsNominalThevaluesofanominalattributearejustdifferentnames,i.e.,nominalattributesprovideonlyenoughinformationtodistinguishoneobjectfromanother.(=,)zipcodes,employeeIDnumbers,eyecolor,sex:{male,female}mode,entropy,contingencycorrelation,2testOrdinalThevaluesofanordinalattributeprovideenoughinformationtoorderobjects.(<,>)hardnessofminerals,{good,better,best},
grades,streetnumbersmedian,percentiles,rankcorrelation,runtests,signtestsIntervalForintervalattributes,thedifferencesbetweenvaluesaremeaningful,i.e.,aunitofmeasurementexists.
(+,-)calendardates,temperatureinCelsiusorFahrenheitmean,standarddeviation,Pearson'scorrelation,tandFtestsRatioForratiovariables,bothdifferencesandratiosaremeaningful.(*,/)temperatureinKelvin,monetaryquantities,counts,age,mass,length,electricalcurrentgeometricmean,harmonicmean,percentvariationAttributeLevelTransformationCommentsNominalAnypermutationofvaluesIfallemployeeIDnumberswerereassigned,woulditmakeanydifference?OrdinalAnorderpreservingchangeofvalues,i.e.,
new_value=f(old_value)
wherefisamonotonicfunction.Anattributeencompassingthenotionofgood,betterbestcanberepresentedequallywellbythevalues{1,2,3}orby{0.5,1,10}.Intervalnew_value=a*old_value+bwhereaandbareconstantsThus,theFahrenheitandCelsiustemperaturescalesdifferintermsofwheretheirzerovalueisandthesizeofaunit(degree).Rationew_value=a*old_valueLengthcanbemeasuredinmetersorfeet.DiscreteandContinuousAttributesDiscreteAttributeHasonlyafiniteorcountablyinfinitesetofvaluesExamples:zipcodes,counts,orthesetofwordsinacollectionofdocumentsOftenrepresentedasintegervariables.Note:binaryattributesareaspecialcaseofdiscreteattributesContinuousAttributeHasrealnumbersasattributevaluesExamples:temperature,height,orweight.Practically,realvaluescanonlybemeasuredandrepresentedusingafinitenumberofdigits.Continuousattributesaretypicallyrepresentedasfloating-pointvariables.TypesofdatasetsRecordDataMatrixDocumentDataTransactionDataGraphWorldWideWebMolecularStructuresOrderedSpatialDataTemporalDataSequentialDataGeneticSequenceDataImportantCharacteristicsofStructuredDataDimensionalityCurseofDimensionalitySparsity
OnlypresencecountsResolutionPatternsdependonthescaleRecordDataDatathatconsistsofacollectionofrecords,eachofwhichconsistsofafixedsetofattributesDataMatrixIfdataobjectshavethesamefixedsetofnumericattributes,thenthedataobjectscanbethoughtofaspointsinamulti-dimensionalspace,whereeachdimensionrepresentsadistinctattributeSuchdatasetcanberepresentedbyanmbynmatrix,wheretherearemrows,oneforeachobject,andncolumns,oneforeachattributeDocumentDataEachdocumentbecomesa`term'vector,eachtermisacomponent(attribute)ofthevector,thevalueofeachcomponentisthenumberoftimesthecorrespondingtermoccursinthedocument.TransactionDataAspecialtypeofrecorddata,whereeachrecord(transaction)involvesasetofitems.Forexample,consideragrocerystore.Thesetofproductspurchasedbyacustomerduringoneshoppingtripconstituteatransaction,whiletheindividualproductsthatwerepurchasedaretheitems.GraphDataExamples:GenericgraphandHTMLLinksChemicalDataBenzeneMolecule:C6H6OrderedDataSequencesoftransactionsAnelementofthesequenceItems/EventsOrderedDataGenomicsequencedataOrderedDataSpatio-TemporalDataAverageMonthlyTemperatureoflandandoceanDataQualityWhatkindsofdataqualityproblems?Howcanwedetectproblemswiththedata?Whatcanwedoabouttheseproblems?Examplesofdataqualityproblems:NoiseandoutliersmissingvaluesduplicatedataNoiseNoisereferstomodificationoforiginalvaluesExamples:distortionofaperson’svoicewhentalkingonapoorphoneand“snow”ontelevisionscreenTwoSineWavesTwoSineWaves+NoiseOutliersOutliersaredataobjectswithcharacteristicsthatareconsiderablydifferentthanmostoftheotherdataobjectsinthedatasetMissingValuesReasonsformissingvaluesInformationisnotcollected
(e.g.,peopledeclinetogivetheirageandweight)Attributesmaynotbeapplicabletoallcases
(e.g.,annualincomeisnotapplicabletochildren)HandlingmissingvaluesEliminateDataObjectsEstimateMissingValuesIgnoretheMissingValueDuringAnalysisReplacewithallpossiblevalues(weightedbytheirprobabilities)DuplicateDataDatasetmayincludedataobjectsthatareduplicates,oralmostduplicatesofoneanotherMajorissuewhenmergingdatafromheterogeoussourcesExamples:SamepersonwithmultipleemailaddressesDatacleaningProcessofdealingwithduplicatedataissuesDataPreprocessingAggregationSamplingDimensionalityReductionFeaturesubsetselectionFeaturecreationDiscretizationandBinarizationAttributeTransformationAggregationCombiningtwoormoreattributes(orobjects)intoasingleattribute(orobject)PurposeDatareductionReducethenumberofattributesorobjectsChangeofscaleCitiesaggregatedintoregions,states,countries,etcMore“stable”dataAggregateddatatendstohavelessvariabilityAggregationStandardDeviationofAverageMonthlyPrecipitationStandardDeviationofAverageYearlyPrecipitationVariationofPrecipitationinAustraliaSamplingSamplingisthemaintechniqueemployedfordataselection.Itisoftenusedforboththepreliminaryinvestigationofthedataandthefinaldataanalysis.
Statisticianssamplebecauseobtainingtheentiresetofdataofinterestistooexpensiveortimeconsuming.
Samplingisusedindataminingbecauseprocessingtheentiresetofdataofinterestistooexpensiveortimeconsuming.Sampling…Thekeyprincipleforeffectivesamplingisthefollowing:usingasamplewillworkalmostaswellasusingtheentiredatasets,ifthesampleisrepresentative
Asampleisrepresentativeifithasapproximatelythesameproperty(ofinterest)astheoriginalsetofdataTypesofSamplingSimpleRandomSamplingThereisanequalprobabilityofselectinganyparticularitemSamplingwithoutreplacementAseachitemisselected,itisremovedfromthepopulationSamplingwithreplacementObjectsarenotremovedfromthepopulationastheyareselectedforthesample.Insamplingwithreplacement,thesameobjectcanbepickedupmorethanonceStratifiedsamplingSplitthedataintoseveralpartitions;thendrawrandomsamplesfromeachpartitionSampleSize
8000points 2000Points 500PointsSampleSizeWhatsamplesizeisnecessarytogetatleastoneobjectfromeachof10groups.CurseofDimensionalityWhendimensionalityincreases,databecomesincreasinglysparseinthespacethatitoccupiesDefinitionsofdensityanddistancebetweenpoints,whichiscriticalforclusteringandoutlierdetection,becomelessmeaningfulRandomlygenerate500pointsComputedifferencebetweenmaxandmindistancebetweenanypairofpointsDimensionalityReductionPurpose:AvoidcurseofdimensionalityReduceamountoftimeandmemoryrequiredbydataminingalgorithmsAllowdatatobemoreeasilyvisualizedMayhelptoeliminateirrelevantfeaturesorreducenoiseTechniquesPrincipleComponentAnalysisSingularValueDecompositionOthers:supervisedandnon-lineartechniquesDimensionalityReduction:PCAGoalistofindaprojectionthatcapturesthelargestamountofvariationindatax2x1eDimensionalityReduction:PCAFindtheeigenvectorsofthecovariancematrixTheeigenvectorsdefinethenewspacex2x1eDimensionalityReduction:ISOMAPConstructaneighbourhoodgraphForeachpairofpointsinthegraph,computetheshortestpathdistances–geodesicdistancesBy:Tenenbaum,deSilva,Langford(2000)DimensionalityReduction:PCAFeatureSubsetSelectionAnotherwaytoreducedimensionalityofdataRedundantfeaturesduplicatemuchoralloftheinformationcontainedinoneormoreotherattributesExample:purchasepriceofaproductandtheamountofsalestaxpaidIrrelevantfeaturescontainnoinformationthatisusefulforthedataminingtaskathandExample:students'IDisoftenirrelevanttothetaskofpredictingstudents'GPAFeatureSubsetSelectionTechniques:Brute-forceapproch:TryallpossiblefeaturesubsetsasinputtodataminingalgorithmEmbeddedapproaches:FeatureselectionoccursnaturallyaspartofthedataminingalgorithmFilterapproaches:FeaturesareselectedbeforedataminingalgorithmisrunWrapperapproaches:UsethedataminingalgorithmasablackboxtofindbestsubsetofattributesFeatureCreationCreatenewattributesthatcancapturetheimportantinformationinadatasetmuchmoreefficientlythantheoriginalattributesThreegeneralmethodologies:FeatureExtractiondomain-specificMappingDatatoNewSpaceFeatureConstructioncombiningfeaturesMappingDatatoaNewSpaceTwoSineWavesTwoSineWaves+NoiseFrequencyFouriertransformWavelettransformDiscretizationUsingClassLabelsEntropybasedapproach3categoriesforbothxandy5categoriesforbothxandyDiscretizationWithoutUsingClassLabelsDataEqualintervalwidthEqualfrequencyK-meansAttributeTransformationAfunctionthatmapstheentiresetofvaluesofagivenattributetoanewsetofreplacementvaluessuchthateacholdvaluecanbeidentifiedwithoneofthenewvaluesSimplefunctions:xk,log(x),ex,|x|StandardizationandNormalizationSimilarityandDissimilaritySimilarityNumericalmeasureofhowaliketwodataobjectsare.Ishigherwhenobjectsaremorealike.Oftenfallsintherange[0,1]DissimilarityNumericalmeasureofhowdifferentaretwodataobjectsLowerwhenobjectsaremorealikeMinimumdissimilarityisoften0UpperlimitvariesProximityreferstoasimilarityordissimilaritySimilarity/DissimilarityforSimpleAttributespandqaretheattributevaluesfortwodataobjects.EuclideanDistanceEuclideanDistance
Wherenisthenumberofdimensions(attributes)andpkandqkare,respectively,thekthattributes(components)ordataobjectspandq.Standardizationisnecessary,ifscalesdiffer.EuclideanDistanceDistanceMatrixMinkowskiDistanceMinkowskiDistanceisageneralizationofEuclideanDistance
Whererisaparameter,nisthenumberofdimensions(attributes)andpkandqkare,respectively,thekthattributes(components)ordataobjectspandq.MinkowskiDistance:Examplesr=1.Cityblock(Manhattan,taxicab,L1norm)distance.AcommonexampleofthisistheHammingdistance,whichisjustthenumberofbitsthataredifferentbetweentwobinaryvectorsr=2.Euclideandistancer
.“supremum”(Lmax
norm,L
norm)distance.ThisisthemaximumdifferencebetweenanycomponentofthevectorsDonotconfuserwithn,i.e.,allthesedistancesaredefinedforallnumbersofdimensions.MinkowskiDistanceDistanceMatrixMahalanobisDistanceForredpoints,theEuclideandistanceis14.7,Mahalanobisdistanceis6.isthecovariancematrixoftheinputdataXMahalanobisDistanceCovarianceMatrix:BACA:(0.5,0.5)B:(0,1)C:(1.5,1.5)Mahal(A,B)=5Mahal(A,C)=4CommonPropertiesofaDistanceDistances,suchastheEuclideandistance,havesomewellknownproperties.d(p,q)0forallpandqandd(p,q)=0onlyif
p
=q.(Positivedefiniteness)d(p,q)=d(q,p)forallpandq.(Symmetry)d(p,r)d(p,q)+d(q,r)forallpointsp,q,andr.
(TriangleInequality) whered(p,q)isthedistance(dissimilarity)betweenpoints(dataobjects),pandq.AdistancethatsatisfiesthesepropertiesisametricCommonPropertiesofaSimilaritySimilarities,alsohavesomewellknownproperties.s(p,q)=1(ormaximumsimilarity)onlyifp
=q.
s(p,q)=s(q,p)forallpandq.(Symmetry)
wheres(p,q)isthesimilaritybetweenpoints(dataobjects),pandq.SimilarityBetweenBinaryVectorsCommonsituationisthatobjects,pandq,haveonlybinaryattributesComputesimilaritiesusingthefollowingquantities M01
=thenumberofattributeswherepwas0andqwas1 M10=thenumberofattributeswherepwas1andqwas0 M00
=thenumberofattributeswherepwas0andqwas0 M11
=thenumberofattributeswherepwas1andqwas1SimpleMatchingandJaccardCoefficients SMC=numberofmatches/numberofattributes =(M11+M00)/(M01+M10+M11+M00) J=numberof11matches/numberofnot-both-zeroattributesvalues =(M11)/(M01+M10+M11)SMCversusJaccard:Examplep=1000000000
q=0000001001
M01
=2(thenumberofattributeswherepwas0andqwas1)M10
=1(thenumberofattributeswherepwas1andqwas0)M00
=7(thenumberofattributeswherepwas0andqwas0)M11
=0(thenumberofattributeswherepwas1andqwas1)
SMC=(M11+M00)/(M01+M10+M11+M00)=(0+7)/(2+1+0+7)=0.7
J=(M11)/(M01+M10+M11)=0/(2+1+0)=0
CosineSimilarityIf
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于孩子撫養(yǎng)權(quán)的離婚合同書
- 貨物采購(gòu)合同補(bǔ)充協(xié)議
- 設(shè)備銷售與購(gòu)買合同范文
- 車險(xiǎn)綜合保險(xiǎn)合同示例
- 服務(wù)合同預(yù)付款借款范本
- 歌手簽約演出服務(wù)合同
- 服裝采購(gòu)代理合同
- 大型建筑機(jī)械租賃合同樣本范本
- 城鄉(xiāng)結(jié)合部三方共建項(xiàng)目合同
- 商鋪?zhàn)赓U合同規(guī)范樣本
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)附答案
- 2025年春新人教版歷史七年級(jí)下冊(cè)全冊(cè)課件
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)
- 活在課堂里 課件
- 教科版五年級(jí)下冊(cè)科學(xué)同步練習(xí)全冊(cè)
- 汶川地震波時(shí)程記錄(臥龍3向)
- NB∕T 32004-2018 光伏并網(wǎng)逆變器技術(shù)規(guī)范
- 入職申請(qǐng)表完整版
- 醫(yī)院會(huì)診單模板
- 美麗的貴州教學(xué)設(shè)計(jì)
- 室外雨水量及管徑計(jì)算表
評(píng)論
0/150
提交評(píng)論