2022-2023學(xué)年湖南省益陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2022-2023學(xué)年湖南省益陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2022-2023學(xué)年湖南省益陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2022-2023學(xué)年湖南省益陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2022-2023學(xué)年湖南省益陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年湖南省益陽市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.

B.

C.

D.

2.

3.

4.設(shè)z=x2+y2,dz=()。

A.2ex2+y2(xdx+ydy)

B.2ex2+y2(zdy+ydx)

C.ex2+y2(xdx+ydy)

D.2ex2+y2(dx2+dy2)

5.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C

6.方程x2+y2-z=0表示的二次曲面是

A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

7.

8.

9.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為

A.2B.-2C.3D.-3

10.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為

A.3B.2C.1D.011.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

12.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)13.A.A.1B.2C.3D.4

14.

15.

16.A.A.

B.

C.

D.

17.A.A.

B.

C.

D.

18.

19.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().

A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量20.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx21.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸22.A.A.4B.3C.2D.123.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合

24.

25.

26.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)

B.f(x)在點(diǎn)x0必定不可導(dǎo)

C.

D.

27.

28.

29.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

30.

31.

32.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

33.

34.在特定工作領(lǐng)域內(nèi)運(yùn)用技術(shù)、工具、方法等的能力稱為()

A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確35.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)

36.

37.

38.下列命題中正確的有().

39.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

40.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

41.

42.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)43.

44.

45.

46.

47.A.A.3

B.5

C.1

D.

48.49.A.A.

B.

C.

D.

50.

二、填空題(20題)51.

52.

53.

54.55.

56.

57.

58.

59.若∫x0f(t)dt=2e3x-2,則f(x)=________。

60.

61.

62.

63.二階常系數(shù)線性微分方程y-4y+4y=0的通解為__________.

64.

65.

66.若=-2,則a=________。67.68.

69.

70.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。三、計(jì)算題(20題)71.證明:72.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.75.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).78.

79.

80.81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

82.求曲線在點(diǎn)(1,3)處的切線方程.83.將f(x)=e-2X展開為x的冪級(jí)數(shù).

84.求微分方程y"-4y'+4y=e-2x的通解.

85.

86.

87.求微分方程的通解.88.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

89.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

90.

四、解答題(10題)91.92.

93.

94.

95.

96.

97.

98.

99.

100.五、高等數(shù)學(xué)(0題)101.求函數(shù)I(x)=

的極值。

六、解答題(0題)102.(本題滿分8分)

參考答案

1.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

2.C

3.A

4.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy

5.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。

6.C

7.C

8.B解析:

9.C解析:

10.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。

11.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

12.A本題考查的知識(shí)點(diǎn)為無窮級(jí)數(shù)的收斂性。

13.D

14.C

15.A

16.A

17.C

18.C解析:

19.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.

由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

20.A

21.B本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

22.C

23.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

24.C

25.D

26.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

27.A

28.A解析:

29.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

30.C解析:

31.A

32.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

33.D

34.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過程、慣例、技術(shù)和工具的能力。

35.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)

f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。

令f'(x)=0得駐點(diǎn)x1=1,x2=2。

當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。

當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。

當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。

36.D

37.A

38.B解析:

39.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。

40.C

41.C

42.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).

由于y=xlnx,可知

y'=1+lnx,

切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有

1+lnx0=2,

可解得x0=e,從而知

y0=x0lnx0=elne=e.

故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.

43.B

44.B

45.D

46.C解析:

47.A本題考查的知識(shí)點(diǎn)為判定極值的必要條件.

故應(yīng)選A.

48.A

49.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。

50.C解析:

51.

52.2

53.

54.yf''(xy)+f'(x+y)+yf''(x+y)55.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

56.ln2

57.e2

58.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:

59.6e3x

60.

61.e-662.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此

63.

64.

解析:

65.66.因?yàn)?a,所以a=-2。

67.

本題考查的知識(shí)點(diǎn)為定積分的換元法.

解法1

解法2

令t=1+x2,則dt=2xdx.

當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.

這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.

68.

69.

70.

71.

72.

73.

74.

75.由等價(jià)無窮小量的定義可知76.函數(shù)的定義域?yàn)?/p>

注意

77.

列表:

說明

78.

79.

80.

81.

82.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

83.

84.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

85.

86.

87.88.由二重積分物理意義知

89.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%90.由一階線性微分方程通解公式有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論