




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年湖北省荊州市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
2.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
3.
4.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
5.
6.
7.A.
B.
C.
D.
8.
9.力偶對剛體產(chǎn)生哪種運(yùn)動效應(yīng)()。
A.既能使剛體轉(zhuǎn)動,又能使剛體移動B.與力產(chǎn)生的運(yùn)動效應(yīng)有時候相同,有時不同C.只能使剛體轉(zhuǎn)動D.只能使剛體移動
10.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
11.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
12.
13.
14.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時,f(x)<0;當(dāng)x>-1時,f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點,但不是極值點B.x=-1不是駐點C.x=-1為極小值點D.x=-1為極大值點15.級數(shù)(a為大于0的常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
16.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動,輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時,輪緣上M點的速度、加速度和物體A的速度、加速度計算不正確的是()。
A.M點的速度為vM=0.36m/s
B.M點的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
17.
18.
19.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
20.
21.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
22.
23.
24.
25.
等于().
26.下列結(jié)論正確的有A.若xo是f(x)的極值點,則x0一定是f(x)的駐點
B.若xo是f(x)的極值點,且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點,則x0一定是f(xo)的極值點
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
27.
28.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
29.
30.
31.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-5
32.
33.
34.
35.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
36.當(dāng)x→0時,x是ln(1+x2)的
A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小37.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
38.單位長度扭轉(zhuǎn)角θ與下列哪項無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
39.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
40.A.
B.
C.e-x
D.
41.
42.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合43.
44.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少45.()。A.
B.
C.
D.
46.
47.
48.設(shè)曲線y=x-ex在點(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
49.
50.A.A.
B.
C.
D.
二、填空題(20題)51.
52.53.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。54.設(shè),則y'=______.
55.設(shè)y=-lnx/x,則dy=_________。
56.
57.
58.
59.過點(1,-1,0)且與直線平行的直線方程為______。60.
61.
62.
63.
64.
65.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
66.
67.
68.
69.
70.
三、計算題(20題)71.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
72.
73.求微分方程y"-4y'+4y=e-2x的通解.
74.
75.求曲線在點(1,3)處的切線方程.76.77.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.78.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.79.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.80.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
81.將f(x)=e-2X展開為x的冪級數(shù).82.求微分方程的通解.83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.84.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
85.
86.
87.88.89.證明:
90.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)91.若y=y(x)由方程y=x2+y2,求dy。
92.
93.
94.求微分方程的通解.
95.
96.
97.
98.
99.求∫xlnxdx。
100.
五、高等數(shù)學(xué)(0題)101.若
,則
六、解答題(0題)102.
參考答案
1.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
2.B本題考查的知識點為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。
3.D解析:
4.A由于
可知應(yīng)選A.
5.D
6.B解析:
7.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
8.B解析:
9.A
10.A
11.C
12.B解析:
13.B
14.C本題考查的知識點為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點,當(dāng)x<-1時f(x)<0;當(dāng)x>-1時,
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點,故應(yīng)選C.
15.A本題考查的知識點為級數(shù)絕對收斂與條件收斂的概念.
注意為p=2的p級數(shù),因此為收斂級數(shù),由比較判別法可知收斂,故絕對收斂,應(yīng)選A.
16.B
17.A解析:
18.B
19.D
20.D
21.D本題考查了函數(shù)的極值的知識點。
22.C
23.B
24.C
25.D解析:本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法.
因此選D.
26.B
27.B解析:
28.C
29.A解析:
30.B
31.B
32.D
33.C
34.C解析:
35.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
36.D解析:
37.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
38.A
39.C本題考查了萊布尼茨公式的知識點.
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
40.A
41.D
42.A本題考查的知識點為兩平面的關(guān)系.
兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.
43.B
44.A本題考查的知識點為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
45.D
46.C解析:
47.B
48.C本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(0,-1)處切線斜率為0,因此選C.
49.C
50.D本題考查的知識點為可變上限積分的求導(dǎo).
當(dāng)f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時,
因此應(yīng)選D.
51.3x2+4y3x2+4y解析:52.153.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。54.解析:本題考查的知識點為導(dǎo)數(shù)的四則運(yùn)算.
55.
56.ee解析:57.對已知等式兩端求導(dǎo),得
58.(-22)(-2,2)解析:59.本題考查的知識點為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點向式方程可知所求直線方程為
60.
61.
本題考查的知識點為導(dǎo)數(shù)的四則運(yùn)算.
62.
本題考查的知識點為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.
63.e-6
64.2
65.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因為a>0,所以,f''(0)<0,所以x=0是極值點.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因為a>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
66.π/8
67.
68.
解析:
69.>1
70.11解析:71.由等價無窮小量的定義可知
72.
73.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
74.由一階線性微分方程通解公式有
75.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
76.
77.
列表:
說明
78.
79.由二重積分物理意義知
80.
81.
82.83.函數(shù)的定義域為
注意
84.
85.
86.
則
87.
88.
89.
90.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
91.92.本題考查的知識點為求曲線的切線方程.切線方程為y+3=一3(x+1),或?qū)憺?x+y+6=0.求曲線y=f(x,y)的切線方程,通常要找出切點及函數(shù)在切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版西瓜種植合作協(xié)議
- 二零二五部分股權(quán)轉(zhuǎn)讓合同書范例
- 單位協(xié)定存款協(xié)議
- 公司借款擔(dān)保合同二零二五年
- 二零二五版運(yùn)費結(jié)算協(xié)議書
- 2025年普通員工勞動合同
- 交通安全違法行為宣講
- 2025國際服務(wù)貿(mào)易合同的
- 2025建筑工程施工、分包合同
- 2025年合同的效力范圍
- 專題12 九年級下冊易混易錯總結(jié)-備戰(zhàn)2024年中考道德與法治一輪復(fù)習(xí)知識清單(全國通用)
- 華住會酒店員工手冊
- 成人住院患者跌倒評估與預(yù)防(團(tuán)體標(biāo)準(zhǔn))解讀
- 刺殺操培訓(xùn)課件
- 物流員工的入職培訓(xùn)
- 華為商務(wù)禮儀課件內(nèi)部
- 絨毛膜羊膜炎疾病演示課件
- 分泌性中耳炎護(hù)理查房 課件
- 海康人臉抓拍系統(tǒng)方案
- GB/T 43441.1-2023信息技術(shù)數(shù)字孿生第1部分:通用要求
- 初中語文作業(yè)設(shè)計研究
評論
0/150
提交評論