2022-2023學(xué)年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年江蘇省泰州市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4

3.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

4.設(shè)函數(shù)f(x)與g(x)均在(α,b)可導(dǎo),且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是

A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小

5.

6.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().

A.-sinx

B.cosx

C.

D.

7.

8.

9.

10.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

11.=()。A.

B.

C.

D.

12.

13.

14.

15.

16.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-217.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面18.()。A.

B.

C.

D.

19.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

20.當(dāng)x→0時(shí),3x是x的().

A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量

21.

22.當(dāng)x→0時(shí),x是ln(1+x2)的

A.高階無窮小B.同階但不等價(jià)無窮小C.等價(jià)無窮小D.低階無窮小

23.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論

24.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().

A.-3/4B.0C.3/4D.1

25.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同26.級數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散

27.

28.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

29.

30.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線31.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

32.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

33.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

34.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().

A.2sinxB.2cosxC.-2sinxD.-2cosx

35.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來表示,其公式為()。

A.

B.

C.

D.

36.

37.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)38.A.A.0B.1C.2D.3

39.

40.平衡積分卡控制是()首創(chuàng)的。

A.戴明B.施樂公司C.卡普蘭和諾頓D.國際標(biāo)準(zhǔn)化組織

41.

42.前饋控制、同期控制和反饋控制劃分的標(biāo)準(zhǔn)是()

A.按照時(shí)機(jī)、對象和目的劃分B.按照業(yè)務(wù)范圍劃分C.按照控制的順序劃分D.按照控制對象的全面性劃分43.等于().A.A.0

B.

C.

D.∞

44.

A.

B.

C.

D.

45.

46.

47.方程y+2y+y=0的通解為

A.c1+c2e-x

B.e-x(c1+C2x)

C.c1e-x

D.c1e-x+c2ex

48.A.A.1B.2C.1/2D.-1

49.

50.A.A.1

B.

C.m

D.m2

二、填空題(20題)51.

52.設(shè)f(x)=1+cos2x,則f'(1)=__________。

53.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。54.

55.

56.

57.

58.

59.

60.

61.

62.

63.設(shè)函數(shù)y=x2+sinx,則dy______.64.設(shè)f(x)在x=1處連續(xù),65.過點(diǎn)(1,-1,0)且與直線平行的直線方程為______。66.設(shè)y=,則y=________。67.

68.

69.

70.設(shè)z=sin(x2+y2),則dz=________。

三、計(jì)算題(20題)71.

72.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

73.

74.

75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).76.證明:77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.78.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

79.

80.

81.求微分方程的通解.82.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則83.將f(x)=e-2X展開為x的冪級數(shù).84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

85.求微分方程y"-4y'+4y=e-2x的通解.

86.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

87.88.求曲線在點(diǎn)(1,3)處的切線方程.89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.四、解答題(10題)91.

92.

93.證明:ex>1+x(x>0)

94.設(shè)z=z(x,y)由x2+y3+2z=1確定,求

95.96.設(shè)F(x)為f(x)的一個(gè)原函數(shù),且f(x)=xlnx,求F(x).97.

98.設(shè)z=xsiny,求dz。

99.

100.

五、高等數(shù)學(xué)(0題)101.已知

=()。

A.

B.

C.

D.

六、解答題(0題)102.設(shè)函數(shù)y=sin(2x-1),求y'。

參考答案

1.A

2.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。

3.B本題考查的知識點(diǎn)為不定積分運(yùn)算.

因此選B.

4.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒有g(shù)(α)與f(α)的已知條件,無法判明f(x)與g(x)的關(guān)系。

5.D

6.C解析:本題考查的知識點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

7.C

8.A

9.C解析:

10.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

11.D

12.D

13.D

14.A

15.C

16.D本題考查的知識點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

17.B

18.D

19.B對照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

20.C本題考查的知識點(diǎn)為無窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯誤.

21.D

22.D解析:

23.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

24.D解析:本題考查的知識點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使

可知應(yīng)選D.

25.D

26.A

27.A

28.C本題考查的知識點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

29.B解析:

30.D本題考查了曲線的漸近線的知識點(diǎn),

31.A本題考查的知識點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

32.B本題考查的知識點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

33.B本題考查的知識點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.

本題中常見的錯誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.

34.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f(x)=2(sinx)≈2cosx.

可知應(yīng)選B.

35.A

36.D解析:

37.C

本題考查的知識點(diǎn)為可變限積分求導(dǎo).

38.B

39.A解析:

40.C

41.A解析:

42.A解析:根據(jù)時(shí)機(jī)、對象和目的來劃分,控制可分為前饋控制、同期控制和反饋控制。

43.A

44.B本題考查的知識點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

45.C解析:

46.A

47.B

48.C

49.A

50.D本題考查的知識點(diǎn)為重要極限公式或等價(jià)無窮小量代換.

解法1

解法2

51.

52.-2sin253.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx54.

55.3x+y-5z+1=03x+y-5z+1=0解析:

56.e-6

57.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識點(diǎn)。

58.ln|1-cosx|+Cln|1-cosx|+C解析:

59.

60.1/200

61.y=x3+1

62.63.(2x+cosx)dx;本題考查的知識點(diǎn)為微分運(yùn)算.

解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,

可知dy=(2x+cosx)dx.

解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.64.2本題考查的知識點(diǎn)為:連續(xù)性與極限的關(guān)系;左極限、右極限與極限的關(guān)系.

由于f(x)在x=1處連續(xù),可知必定存在,由于,可知=65.本題考查的知識點(diǎn)為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為

66.

67.

68.369.

70.2cos(x2+y2)(xdx+ydy)

71.

72.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

73.

74.

75.

列表:

說明

76.

77.由二重積分物理意義知

78.

79.

80.由一階線性微分方程通解公式有

81.82.由等價(jià)無窮小量的定義可知

83.

84.

85.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

86.

87.88.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

89.函數(shù)的定義域?yàn)?/p>

注意

90.

91.

92.

93.

94.本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論