版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
IntroductiontoAlgorithms劉東林
華東理工大學信息學院計算機系Lecture05StructuresBinarySearchTreesReview:DynamicSetsfocusondatastructuresratherthanstraightalgorithmsInparticular,structuresfordynamicsetsElementshaveakeyandsatellitedataDynamicsetssupportqueriessuchas:Search(S,k),Minimum(S),Maximum(S),Successor(S,x),Predecessor(S,x)Theymayalsosupportmodifyingoperationslike:Insert(S,x),Delete(S,x)Review:BinarySearchTreesBinarySearchTrees(BSTs)areanimportantdatastructurefordynamicsetsInadditiontosatellitedata,elementshave:key:anidentifyingfieldinducingatotalorderingleft:pointertoaleftchild(maybeNULL)right:pointertoarightchild(maybeNULL)p:pointertoaparentnode(NULLforroot)Review:BinarySearchTreesBSTproperty:
key[leftSubtree(x)]key[x]key[rightSubtree(x)]Example:FBHKDAInorderTreeWalkWhatdoesthefollowingcodedo?TreeWalk(x)TreeWalk(left[x]);print(x);TreeWalk(right[x]);A:printselementsinsorted(increasing)orderThisiscalledaninordertreewalkPreordertreewalk:printroot,thenleft,thenrightPostordertreewalk:printleft,thenright,thenrootInorderTreeWalkExample:Howlongwillatreewalktake?ProvethatinorderwalkprintsinmonotonicallyincreasingorderFBHKDAOperationsonBSTs:SearchGivenakeyandapointertoanode,returnsanelementwiththatkeyorNULL:TreeSearch(x,k)if(x=NULLork=key[x])returnx;if(k<key[x])returnTreeSearch(left[x],k);elsereturnTreeSearch(right[x],k);BSTSearch:ExampleSearchforDandC:FBHKDAOperationsonBSTs:SearchHere’sanotherfunctionthatdoesthesame:TreeSearch(x,k)while(x!=NULLandk!=key[x])if(k<key[x])x=left[x];elsex=right[x];returnx;Whichofthesetwofunctionsismoreefficient?OperationsofBSTs:InsertAddsanelementxtothetreesothatthebinarysearchtreepropertycontinuestoholdThebasicalgorithmLikethesearchprocedureaboveInsertxinplaceofNULLUsea“trailingpointer”tokeeptrackofwhereyoucamefrom(likeinsertingintosinglylinkedlist)BSTInsert:ExampleExample:InsertCFBHKDACBSTSearch/Insert:RunningTimeWhatistherunningtimeofTreeSearch()orTreeInsert()?A:O(h),whereh=heightoftreeWhatistheheightofabinarysearchtree?A:worstcase:h=O(n)whentreeisjustalinearstringofleftorrightchildrenWe’llkeepallanalysisintermsofhfornowLaterwe’llseehowtomaintainh=O(lgn)SortingWithBinarySearchTreesInformalcodeforsortingarrayAoflengthn:BSTSort(A)fori=1tonTreeInsert(A[i]);InorderTreeWalk(root);Arguethatthisis(nlgn)WhatwillbetherunningtimeintheWorstcase?Averagecase?(hint:remindyouofanything?)SortingWithBSTsAveragecaseanalysisIt’saformofquicksort!fori=1tonTreeInsert(A[i]);InorderTreeWalk(root);31826755712867526753182657SortingwithBSTsSamepartitionsaredoneaswithquicksort,butinadifferentorderInpreviousexampleEverythingwascomparedto3onceThenthoseitems<3werecomparedto1onceEtc.Samecomparisonsasquicksort,differentorder!Example:considerinserting5SortingwithBSTsSinceruntimeisproportionaltothenumberofcomparisons,sametimeasquicksort:O(nlgn)Whichdoyouthinkisbetter,quicksortorBSTsort?Why?SortingwithBSTsSinceruntimeisproportionaltothenumberofcomparisons,sametimeasquicksort:O(nlgn)Whichdoyouthinkisbetter,quicksortorBSTSort?Why?A:quicksortBetterconstantsSortsinplaceDoesn’tneedtobuilddatastructureMoreBSTOperationsBSTsaregoodformorethansorting.Forexample,canimplementapriorityqueueWhatoperationsmustapriorityqueuehave?InsertMinimumExtract-MinBSTOperations:MinimumHowcanweimplementaMinimum()query?Whatistherunningtime?BSTOperations:SuccessorFordeletion,wewillneedaSuccessor()operationDrawFig13.2Whatisthesuccessorofnode3?Node15?Node13?Whatarethegeneralrulesforfindingthesuccessorofnodex?(hint:twocases)BSTOperations:SuccessorTwocases:xhasarightsubtree:successorisminimumnodeinrightsubtreexhasnorightsubtree:successorisfirstancestorofxwhoseleftchildisalsoancestorofxIntuition:Aslongasyoumovetotheleftupthetree,you’revisitingsmallernodes.Predecessor:similaralgorithmBSTOperations:DeleteDeletionisabittricky3cases:xhasnochildren:Removexxhasonechild:Spliceoutxxhastwochildren:SwapxwithsuccessorPerformcase1or2todeleteitFBHKDACExample:deleteK
orHorBBSTOperations:DeleteWhywillcase2alwaysgotocase0orcase1?A:becausewhenxhas2children,itssuccessoristheminimuminitsrightsubtreeCouldweswapxwithpredecessorinsteadofsuccessor?A:yes.Woulditbeagoodidea?A:mightbegoodtoalternateTheEndUpnext:guaranteeingaO(lgn)heighttreeRed-BlackTreesRed-BlackTreesRed-blacktrees:BinarysearchtreesaugmentedwithnodecolorOperationsdesignedtoguaranteethattheheight
h=O(lgn)Wedescribedthepropertiesofred-blacktreesWeprovedthattheseguaranteeh=O(lgn)Next:describeoperationsonred-blacktreesRed-BlackPropertiesThered-blackproperties:1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblackNote:thismeansevery“real”nodehas2children3. Ifanodeisred,bothchildrenareblackNote:can’thave2consecutiveredsonapath4. Everypathfromnodetodescendentleafcontainsthesamenumberofblacknodes5. TherootisalwaysblackBlack-Heightblack-height:#blacknodesonpathtoleafWhatistheminimumblack-heightofanodewithheighth?A:aheight-hnodehasblack-heighth/2Theorem:Ared-blacktreewithninternalnodeshasheighth2lg(n+1)Provedby(whatelse?)inductionProvingHeightBoundThusattherootofthered-blacktree:n 2bh(root)-1 n 2h/2-1 lg(n+1)h/2 h2lg(n+1) Thush=O(lgn) RBTrees:Worst-CaseTimeSowe’veprovedthatared-blacktreehasO(lgn)heightCorollary:TheseoperationstakeO(lgn)time:Minimum(),Maximum()Successor(),Predecessor()Search()Insert()andDelete():WillalsotakeO(lgn)timeButwillneedspecialcaresincetheymodifytreeRed-BlackTrees:AnExampleColorthistree:7591212597Red-blackproperties:1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackInsert8Wheredoesitgo?Red-BlackTrees:
TheProblemWithInsertion125971. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackInsert8Wheredoesitgo?Whatcolor
shoulditbe?Red-BlackTrees:
TheProblemWithInsertion1259781. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackInsert8Wheredoesitgo?Whatcolor
shoulditbe?Red-BlackTrees:
TheProblemWithInsertion1259781. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. TherootisalwaysblackRed-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack125978Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?Can’tbered!(#3)1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?Can’tbered!(#3)Can’tbeblack!(#4)1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert11Wheredoesitgo?Whatcolor?Solution:
recolorthetree1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert10Wheredoesitgo?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack12597811Red-BlackTrees:
TheProblemWithInsertionInsert10Wheredoesitgo?Whatcolor?1. Everynodeiseitherredorblack2. Everyleaf(NULLpointer)isblack3. Ifanodeisred,bothchildrenareblack4. Everypathfromnodetodescendentleaf
containsthesamenumberofblacknodes5. Therootisalwaysblack1259781110Red-BlackTrees:
TheProblemWithInsertionInsert10Wheredoesitgo?Whatcolor?A:nocolor!Tree
istooimbalancedMustchangetreestructure
toallowrecoloringGoal:restructuretreein
O(lgn)time1259781110RBTrees:RotationOurbasicoperationforchangingtreestructureiscalledrotation:Doesrotationpreserveinorderkeyordering?WhatwouldthecodeforrightRotate()actuallydo?yxCABxAyBCrightRotate(y)leftRotate(x)rightRotate(y)RBTrees:RotationAnswer:Alotofpointermanipulationxkeepsitsleftchildykeepsitsrightchildx’srightchildesy’sleftchildx’sandy’sparentschangeWhatistherunningtime?yxCABxAyBCRotationExampleRotateleftabout9:12597811RotationExampleRotateleftabout9:51279118Red-BlackTrees:InsertionInsertion:thebasicideaInsertxintotree,colorxredOnlyr-bproperty3mightbeviolated(ifp[x]red)Ifso,moveviolationuptreeuntilaplaceisfoundwhereitcanbefixedTotaltimewillbeO(lgn)rbInsert(x)treeInsert(x);x->color=RED;//Moveviolationof#3uptree,maintaining#4asinvariant:while(x!=root&&x->p->color==RED)if(x->p==x->p->p->left)y=x->p->p->right;if(y->color==RED)x->p->color=BLACK;y->color=BLACK;x->p->p->color=RED;x=x->p->p;else//y->color==BLACKif(x==x->p->right)x=x->p;leftRotate(x);x->p->color=BLACK;x->p->p->color=RED;rightRotate(x->p->p);else//x->p==x->p->p->right(sameasabove,butwith“right”&“l(fā)eft”exchanged)Case1Case2Case3rbInsert(x)treeInsert(x);x->color=RED;//Moveviolationof#3uptree,maintaining#4asinvariant:while(x!=root&&x->p->color==RED)if(x->p==x->p->p->left)y=x->p->p->right;if(y->color==RED)x->p->color=BLACK;y->color=BLACK;x->p->p->color=RED;x=x->p->p;else//y->color==BLACKif(x==x->p->right)x=x->p;leftRotate(x);x->p->color=BLACK;x->p->p->color=RED;rightRotate(x->p->p);else//x->p==x->p->p->right(sameasabove,butwith“right”&“l(fā)eft”exchanged)Case1:uncleisREDCase2Case3RBInsert:Case1if(y->color==RED)x->p->color=BLACK;y->color=BLACK;x->p->p->color=RED;x=x->p->p;Case1:“uncle”isredInfiguresbelow,all’sareequal-black-heightsubtreesCADBCADBxynewxChangecolorsofsomenodes,preserving#4:alldownwardpathshaveequalb.h.Thewhileloopnowco
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)可持續(xù)發(fā)展評估合同模板
- 2025年度商業(yè)綜合體物業(yè)服務合同期限順延協(xié)議
- 2025年度時尚主題餐館整體承包管理合同
- 2025年度自然人二零二五年度個人光伏貸款合同
- 2025年度終止合作協(xié)議通知及項目驗收與交付合同
- 2025年度智能安防系統(tǒng)建設合同解除協(xié)議書
- 2025年度電商品牌推廣合作合同
- 二零二五年度特色小鎮(zhèn)建設裝修施工安全免責合同
- 2025年度文化創(chuàng)意產(chǎn)業(yè)項目聘用合同簡易方案
- 2025年度返聘前員工兼職合作合同
- 常用靜脈藥物溶媒的選擇
- 當代西方文學理論知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學
- 2024年預制混凝土制品購銷協(xié)議3篇
- 2024-2030年中國高端私人會所市場競爭格局及投資經(jīng)營管理分析報告
- GA/T 1003-2024銀行自助服務亭技術規(guī)范
- 《消防設備操作使用》培訓
- 新交際英語(2024)一年級上冊Unit 1~6全冊教案
- 2024年度跨境電商平臺運營與孵化合同
- 2024年電動汽車充電消費者研究報告-2024-11-新能源
- 湖北省黃岡高級中學2025屆物理高一第一學期期末考試試題含解析
- 上海市徐匯中學2025屆物理高一第一學期期末學業(yè)水平測試試題含解析
評論
0/150
提交評論