實(shí)驗(yàn)四、基于grabcut交互式圖像分割graphcut_第1頁
實(shí)驗(yàn)四、基于grabcut交互式圖像分割graphcut_第2頁
實(shí)驗(yàn)四、基于grabcut交互式圖像分割graphcut_第3頁
實(shí)驗(yàn)四、基于grabcut交互式圖像分割graphcut_第4頁
實(shí)驗(yàn)四、基于grabcut交互式圖像分割graphcut_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

GraphCutGraphcutGraphcutInteractiveimagesegmentationusinggraphcutBinarylabel:foregroundvs.backgroundUserlabelssomepixelssimilartotrimap,usuallysparserExploitStatisticsofknownFg&BgSmoothnessoflabelTurnintodiscretegraphoptimizationGraphcut(mincut/maxflow)FBFFFFBBBEnergyfunctionLabeling:onevalueperpixel,ForBEnergy(labeling)=data+smoothnessVerygeneralsituationWillbeminimizedData:foreachpixelProbabilitythatthiscolorbelongstoF(resp.B)SimilarinspirittoBayesianmattingSmoothness(akaregularization):

perneighboringpixelpairPenaltyforhavingdifferentlabelPenaltyisdownweightedifthetwo

pixelcolorsareverydifferentSimilarinspirittobilateralfilterOnelabeling

(ok,notbest)DataSmoothnessDatatermA.k.aregionalterm

(becauseintegratedoverfullregion)D(L)=i-logh[Li](Ci)Whereiisapixel

Liisthelabelati(ForB),

Ciisthepixelvalue

h[Li]isthehistogramoftheobservedFg

(respBg)NotetheminussignHardconstraintsTheuserhasprovidedsomelabelsThequickanddirtywaytoinclude

constraintsintooptimizationistoreplacethedatatermbyahugepenaltyifnotrespected.D(L_i)=0ifrespectedD(L_i)=Kifnotrespectede.g.K=-#pixelsSmoothnessterma.k.aboundaryterm,a.k.a.regularizationS(L)={j,i}inNB(Ci,Cj)(Li-Lj)Wherei,jareneighborse.g.8-neighborhood

(butIshow4forsimplicity)

(Li-Lj)is0ifLi=Lj,1otherwiseB(Ci,Cj)ishighwhenCiandCjaresimilar,lowifthereisadiscontinuitybetweenthosetwopixelse.g.exp(-||Ci-Cj||2/22)wherecanbeaconstant

orthelocalvarianceNotepositivesignOptimizationE(L)=D(L)+S(L)

isablack-magicconstantFindthelabelingthatminimizesEInthiscase,howmanypossibilities?29(512)Wecantrythemall!Whataboutmegapixelimages?LabelingasagraphproblemEachpixel=nodeAddtwonodesF&BLabeling:linkeachpixeltoeitherForBDesiredresultDatatermPutoneedgebetweeneachpixelandF&GWeightofedge=minusdatatermDon’tforgethugeweightforhardconstraintsCarefulwithsignSmoothnesstermAddanedgebetweeneachneighborpairWeight=smoothnesstermMincutEnergyoptimizationequivalenttomincutCut:removeedgestodisconnectFfromBMinimum:minimizesumofcutedgeweightcutMincut<=>labelingInordertobeacut:Foreachpixel,eithertheForGedgehastobecutInordertobeminimalOnlyoneedgelabel

perpixelcanbecut

(otherwisecould

beadded)cutEnergyminimizationviagraphcutsLabels(disparities)d1d2d3edgeweightedgeweightGraphCostMatchingcostbetweenimagesNeighborhoodmatchingtermGoal:figureoutwhichlabelsareconnectedtowhichpixelsd1d2d3EnergyminimizationviagraphcutsEnergyminimizationviagraphcutsd1d2d3GraphCutDeleteenoughedgessothateachpixelis(transitively)connectedtoexactlyonelabelnodeCostofacut:sumofdeletededgeweightsFindingmincostcutequivalenttofindingglobalminimumofenergyfunctionComputingamultiwaycutWith2labels:classicalmin-cutproblemSolvablebystandardflowalgorithmspolynomialtimeintheory,nearlylinearinpracticeMorethan2terminals:NP-hard[Dahlhausetal.,STOC‘92]EfficientapproximationalgorithmsexistWithinafactorof2ofoptimalComputeslocalminimuminastrongsenseevenverylargemoveswillnotimprovetheenergyYuriBoykov,OlgaVekslerandRaminZabih,FastApproximateEnergyMinimizationviaGraphCuts,InternationalConferenceonComputerVision,September1999.MoveexamplesStartingpointRed-blueswapmoveGreenexpansionmoveTheswapmovealgorithm1.Startwithanarbitrarylabeling2.Cyclethrougheverylabelpair(A,B)insomeorder2.1FindthelowestElabelingwithinasingleAB-swap2.2GothereifEislowerthanthecurrentlabeling3.IfEdidnotdecreaseinthecycle,we’redoneOtherwise,gotostep2OriginalgraphABABsubgraph(runmin-cutonthisgraph)BATheexpansionmovealgorithm1.Startwithanarbitrarylabeling2.CyclethrougheverylabelAinsomeorder2.1FindthelowestElabelingwithinasingleA-expansion2.2GothereifitEislowerthanthecurrentlabeling3.IfEdidnotdecreaseinthecycle,we’redoneOtherwise,gotostep2GrabCut

InteractiveForegroundExtraction

usingIteratedGraphCuts

CarstenRother

VladimirKolmogorov

AndrewBlake

MicrosoftResearchCambridge-UKDemovideoInteractiveDigitalPhotomontageAseemAgarwala,MiraDontcheva,ManeeshAgrawala,StevenDrucker,AlexColburn,BrianCurless,DavidSalesin,MichaelCohen,“InteractiveDigitalPhotomontage”,SIGGRAPH2004CombiningmultiplephotosFindseamsusinggraphcutsCombinegradientsandintegrateactualphotomontage

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論