版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如果反比例函數(shù)y=kx的圖像經(jīng)過點(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限2.如圖,一張矩形紙片ABCD的長,寬將紙片對折,折痕為EF,所得矩形AFED與矩形ABCD相似,則a:A.2:1 B.:1 C.3: D.3:23.方程(m﹣2)x2+mx﹣1=0是關(guān)于x的一元二次方程,則m的值為()A.任何實數(shù). B.m≠0 C.m≠2 D.m≠﹣24.二次函數(shù)的圖象如圖,有下列結(jié)論:①,②,③時,,④,⑤當且時,,⑥當時,.其中正確的有()A.①②③ B.②④⑥ C.②⑤⑥ D.②③⑤5.已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是()A.1 B.7 C.1或7 D.無法確定6.下列運算中,計算結(jié)果正確的是()A.a(chǎn)4?a=a4 B.a(chǎn)6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b7.已知Rt△ABC中,∠C=900,AC=2,BC=3,則下列各式中,正確的是()A.; B.; C.; D.以上都不對;8.如圖,在直角坐標系中,⊙A的半徑為2,圓心坐標為(4,0),y軸上有點B(0,3),點C是⊙A上的動點,點P是BC的中點,則OP的范圍是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤49.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.110.拋物線y=﹣2(x﹣1)2﹣3與y軸交點的橫坐標為()A.﹣3 B.﹣4 C.﹣5 D.011.一元二次方程x2﹣3x=0的兩個根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣312.如圖,AB是⊙O的弦,OD⊥AB于D交⊙O于E,則下列說法錯誤的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE二、填空題(每題4分,共24分)13.在一個不透明的布袋中裝有黃、白兩種顏色的球共40個,除顏色外其他都相同,小王通過多次摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在0.35左右,則布袋中黃球可能有_________個14.2019年12月6日,某市舉行了2020年商品訂貨交流會,參加會議的每兩家公司之間都簽訂了一份合同,所有參會公司共簽訂了28份合同,則共有_____家公司參加了這次會議.15.如圖,在△ABC中,∠ACB=90°,AC=6,AB=1.現(xiàn)分別以點A、點B為圓心,以大于AB相同的長為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若將△BDE沿直線MN翻折得△B′DE,使△B′DE與△ABC落在同一平面內(nèi),連接B′E、B′C,則△B′CE的周長為_____.16.若方程的一個根,則的值是__________.17.如圖,將一個頂角為30°角的等腰△ABC繞點A順時針旋轉(zhuǎn)一個角度α(0<α<180°)得到△AB'C′,使得點B′、A、C在同一條直線上,則α等于_____°.18.如圖,PA與⊙O相切于點A,AB是⊙O的直徑,在⊙O上存在一點C滿足PA=PC,連結(jié)PB、AC相交于點F,且∠APB=3∠BPC,則=_____.三、解答題(共78分)19.(8分)如圖,胡同左右兩側(cè)是豎直的墻,一架米長的梯子斜靠在右側(cè)墻壁上,測得梯子與地面的夾角為,此時梯子頂端恰巧與墻壁頂端重合.因梯子阻礙交通,故將梯子底端向右移動一段距離到達處,此時測得梯子與地面的夾角為,問:胡同左側(cè)的通道拓寬了多少米(保留根號)?20.(8分)如圖,BD、CE是的高.(1)求證:;(2)若BD=8,AD=6,DE=5,求BC的長.21.(8分)對于平面直角坐標系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.(1)當⊙O的半徑為2時,①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直線與⊙O互為“可及圖形”,求b的取值范圍;(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標m的取值范圍.22.(10分)如圖,一次函數(shù)的圖象分別交x軸、y軸于C,D兩點,交反比例函數(shù)圖象于A(,4),B(3,m)兩點.(1)求直線CD的表達式;(2)點E是線段OD上一點,若,求E點的坐標;(3)請你根據(jù)圖象直接寫出不等式的解集.23.(10分)為了創(chuàng)建文明城市,增強學生的環(huán)保意識.隨機抽取8名學生,對他們的垃圾分類投放情況進行調(diào)查,這8名學生分別標記為,其中“√”表示投放正確,“×”表示投放錯誤,統(tǒng)計情況如下表.學生垃圾類別廚余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名學生中至少有三類垃圾投放正確的概率;(2)為進一步了解垃圾分類投放情況,現(xiàn)從8名學生里“有害垃圾”投放錯誤的學生中隨機抽取兩人接受采訪,試用標記的字母列舉所有可能抽取的結(jié)果.24.(10分)如圖,在正方形ABCD中,點M、N分別在AB、BC邊上,∠MDN=45°.(1)如圖1,DN交AB的延長線于點F.求證:;(2)如圖2,過點M作MP⊥DB于P,過N作NQ⊥BD于,若,求對角線BD的長;(3)如圖3,若對角線AC交DM,DF分別于點T,E.判斷△DTN的形狀并說明理由.25.(12分)將矩形紙片沿翻折,使點落在線段上,對應的點為,若,求的長.26.某校八年級學生在一起射擊訓練中,隨機抽取10名學生的成績?nèi)缦卤?,回答問題:環(huán)數(shù)6789人數(shù)152(1)填空:_______;(2)10名學生的射擊成績的眾數(shù)是_______環(huán),中位數(shù)是_______環(huán);(3)若9環(huán)(含9環(huán))以上評為優(yōu)秀射手,試估計全年級500名學生中有_______名是優(yōu)秀射手.
參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)反比例函數(shù)圖象上點的坐標特點可得k=12,再根據(jù)反比例函數(shù)的性質(zhì)可得函數(shù)圖象位于第一、三象限.【詳解】∵反比例函數(shù)y=kx的圖象經(jīng)過點(-3,-4∴k=-3×(-4)=12,∵12>0,∴該函數(shù)圖象位于第一、三象限,故選:B.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),關(guān)鍵是根據(jù)反比例函數(shù)圖象上點的坐標特點求出k的值.2、B【分析】根據(jù)折疊性質(zhì)得到AF=AB=a,再根據(jù)相似多邊形的性質(zhì)得到,即,然后利用比例的性質(zhì)計算即可.【詳解】解:∵矩形紙片對折,折痕為EF,
∴AF=AB=a,
∵矩形AFED與矩形ABCD相似,
∴,即,
∴a∶b=.
所以答案選B.【點睛】本題考查了相似多邊形的性質(zhì):相似多邊形對應邊的比叫做相似比.相似多邊形的對應角相等,對應邊的比相等.3、C【分析】根據(jù)二次項系數(shù)不為0列出不等式,解不等式得到答案.【詳解】∵方程(m﹣2)x2+mx﹣1=0是關(guān)于x的一元二次方程,∴m﹣2≠0,解得,m≠2,故選:C.【點睛】本題考查了一元一次方程的應用問題,掌握一元一次方程的性質(zhì)以及應用是解題的關(guān)鍵.4、D【分析】①只需根據(jù)拋物線的開口、對稱軸的位置、與y軸的交點位置就可得到a、b、c的符號,從而得到abc的符號;②只需利用拋物線對稱軸方程x==1就可得到2a與b的關(guān)系;③只需結(jié)合圖象就可得到當x=1時y=a+b+c最小,從而解決問題;④根據(jù)拋物線x=圖象在x軸上方,即可得到x=所對應的函數(shù)值的符號;⑤由可得,然后利用拋物線的對稱性即可解決問題;⑥根據(jù)函數(shù)圖像,即可解決問題.【詳解】解:①由拋物線的開口向下可得a>0,
由對稱軸在y軸的右邊可得x=>0,從而有b<0,
由拋物線與y軸的交點在y軸的負半軸上可得c<0,
則abc>0,故①錯誤;
②由對稱軸方程x==1得b=-2a,即2a+b=0,故②正確;
③由圖可知,當x=1時,y=a+b+c最小,則對于任意實數(shù)m(),都滿足,即,故③正確;
④由圖像可知,x=所對應的函數(shù)值為正,
∴x=時,有a-b+c>0,故④錯誤;
⑤若,且x1≠x2,
則,
∴拋物線上的點(x1,y1)與(x2,y2)關(guān)于拋物線的對稱軸對稱,
∴1-x1=x2-1,即x1+x2=2,故⑤正確.⑥由圖可知,當時,函數(shù)值有正數(shù),也有負數(shù),故⑥錯誤;∴正確的有②③⑤;故選:D.【點睛】本題主要考查了拋物線的性質(zhì)(開口、對稱軸、對稱性、最值性等)、拋物線上點的坐標特征等知識,運用數(shù)形結(jié)合的思想即可解決問題.5、C【分析】由于弦AB、CD的具體位置不能確定,故應分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖①,過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②當弦AB和CD在圓心異側(cè)時,如圖②,過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,EF=OF+OE=1,所以AB與CD之間的距離是1或1.故選:C.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了勾股定理及分類討論的思想的應用.6、C【分析】根據(jù)冪的運算法則即可判斷.【詳解】A、a4?a=a5,故此選項錯誤;B、a6÷a3=a3,故此選項錯誤;C、(a3)2=a6,正確;D、(ab)3=a3b3,故此選項錯誤;故選C.【點睛】此題主要考查冪的運算,解題的關(guān)鍵是熟知冪的運算公式.7、C【分析】根據(jù)勾股定理求出AB,根據(jù)銳角三角函數(shù)的定義求出各個三角函數(shù)值,即可得出答案.【詳解】如圖:
由勾股定理得:AB=,
所以cosB=,sinB=,所以只有選項C正確;
故選:C.【點睛】此題考查銳角三角函數(shù)的定義的應用,能熟記銳角三角函數(shù)的定義是解此題的關(guān)鍵.8、A【分析】如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,由勾股定理可求B'A=5,由三角形中位線定理可求B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,即可求解.【詳解】解:如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,∵點B(0,3),B'(0,﹣3),點A(4,0),∴OB=OB'=3,OA=4,∴,∵點P是BC的中點,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,∴,故選:A.【點睛】本題考查了三角形中位線定理,勾股定理,平面直角坐標系,解決本題的關(guān)鍵是正確理解題意,熟練掌握三角形中位線定理的相關(guān)內(nèi)容,能夠得到線段之間的數(shù)量關(guān)系.9、C【詳解】∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.10、D【分析】把x=0代入拋物線y=﹣2(x﹣1)2﹣3,即得拋物線y=﹣2(x﹣1)2﹣3與y軸的交點.【詳解】當x=0時,拋物線y=﹣2(x﹣1)2﹣3與y軸相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,
∴拋物線y=﹣2(x﹣1)2﹣3與y軸的交點坐標為(0,-5).
故選:D.【點睛】此題考查了二次函數(shù)的性質(zhì),二次函數(shù)與y軸的交點坐標,解題關(guān)鍵在于掌握當x=0時,即可求得二次函數(shù)與y軸的交點.11、B【分析】利用因式分解法解一元二次方程即可.【詳解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故選:B.【點睛】本題考查了解一元二次方程?因式分解法:就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).12、D【解析】由垂徑定理和圓周角定理可證,AD=BD,AD=BD,AE=BE,而點D不一定是OE的中點,故D錯誤.【詳解】∵OD⊥AB,∴由垂徑定理知,點D是AB的中點,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分線,有∠AOE=12∠AOB,由圓周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正確,而點D不一定是OE的中點,故錯誤.故選D.【點睛】本題主要考查圓周角定理和垂徑定理,熟練掌握這兩個定理是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、14【分析】先由頻率估計出摸到黃球的概率,然后利用概率公式求解即可.【詳解】因摸到黃球的頻率穩(wěn)定在0.35左右則摸到黃球的概率為0.35設布袋中黃球的個數(shù)為x個由概率公式得解得故答案為:14.【點睛】本題考查了頻率估計概率、概率公式,根據(jù)頻率估計出事件概率是解題關(guān)鍵.14、1【分析】每家公司都與其他公司鑒定了一份合同,設有x家公司參加,則每個公司要簽份合同,簽訂合同共有份.【詳解】設共有x家公司參加了這次會議,根據(jù)題意,得:x(x﹣1)=21,整理,得:x2﹣x﹣56=0,解得:x1=1,x2=﹣7(不合題意,舍去),答:共有1家公司參加了這次會議.故答案是:1.【點睛】考查了一元二次方程的應用,甲乙之間互簽合同,只能算一份,本題屬于不重復記數(shù)問題,類似于若干個人,每兩個人之間都握手,握手總次數(shù).解答中注意舍去不符合題意的解.15、3【分析】根據(jù)線段垂直平分線的性質(zhì)和折疊的性質(zhì)得點B′與點A重合,BE=AE,進而可以求解.【詳解】在△ABC中,∠ACB=90°,AC=6,AB=1.根據(jù)勾股定理,得:BC=2.連接AE,由作圖可知:MN是線段AB的垂直平分線,∴BE=AE,BD=AD,由翻折可知:點B′與點A重合,∴△B′CE的周長=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案為3.【點睛】本題主要考查垂直平分線的性質(zhì)定理和折疊的性質(zhì),通過等量代換把△B′CE的周長化為AC+BC的值,是解題的關(guān)鍵.16、【分析】將m代入方程,再適當變形可得的值.【詳解】解:將m代入方程得,即,所以.故答案為:2020.【點睛】本題考查了一元二次方程的代入求值,靈活的進行代數(shù)式的變形是解題的關(guān)鍵.17、1°【分析】由等腰三角形的性質(zhì)可求∠BAC=∠BCA=75°,由旋轉(zhuǎn)的性質(zhì)可求解.【詳解】解:∵∠B=30°,BC=AB,∴∠BAC=∠BCA=75°,∴∠BAB'=1°,∵將一個頂角為30°角的等腰△ABC繞點A順時針旋轉(zhuǎn)一個角度α(0<α<180°)得到△AB'C′,∴∠BAB'=α=1°,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),靈活運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.18、.【分析】連接OP,OC,證明△OAP≌△OCP,可得PC與⊙O相切于點C,證明BC=CP,設OM=x,則BC=CP=AP=2x,PM=y(tǒng),證得△AMP∽△OAP,可得:,證明△PMF∽△BCF,由可得出答案.【詳解】解:連接OP,OC.∵PA與⊙O相切于點A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC與⊙O相切于點C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直徑,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.設OM=x,則BC=CP=AP=2x,PM=y(tǒng),∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM?OP,∴(2x)2=y(tǒng)(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案為:.【點睛】本題考查了切線的判定與性質(zhì),等腰三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),圓周角定理.正確作出輔助線,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、胡同左側(cè)的通道拓寬了米.【分析】根據(jù)題意,得到△BCE為等腰直角三角形,得到BE=CE,再由解直角三角形,求出DE的長度,然后得到CD的長度.【詳解】解:如圖,∵,∴△BCE為等腰直角三角形,∴,∵,∴,∴;∴胡同左側(cè)的通道拓寬了米.【點睛】本題考查了解直角三角形的應用,解題的關(guān)鍵是掌握題意,正確的進行解直角三角形.20、(1)見解析;(2)BC=.【分析】(1)、是的高,可得,進而可以證明;(2)在中,,,根據(jù)勾股定理可得,結(jié)合(1),對應邊成比例,進而證明,對應邊成比例即可求出的長.【詳解】解:(1)證明:、是的高,,,;(2)在中,,,根據(jù)勾股定理,得,,,,,,,.【點睛】本題考查了相似三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握相似三角形的判定與性質(zhì).21、(1)①1,3;②;(2),.【分析】(1)①根據(jù)圖形M,N間的“近距離”的定義結(jié)合已知條件求解即可.②根據(jù)可及圖形的定義作出符合題意的圖形,結(jié)合圖形作答即可;(2)分兩種情況進行討論即可.【詳解】(1)①如圖:根據(jù)近距離的定義可知:d(A,⊙O)=AC=2-1=1.過點B作BE⊥x軸于點E,則OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案為1,3.②∵由題意可知直線與⊙O互為“可及圖形”,⊙O的半徑為2,∴.∴.∴.(2)①當⊙G與邊OD是可及圖形時,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②當⊙G與邊CD是可及圖形時,如圖,過點G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距離的定義可知d(E,⊙G)的最大值為1,∴此時EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根據(jù)對稱性,OG的最大值為5+2.∴綜上所述,m的取值范圍為:或【點睛】本題主要考查了圓的綜合知識,正確理解“近距離”和“可及圖形”的概念是解題的關(guān)鍵.22、(1);(2);(3)或【分析】(1)把點A(,4)代入中,化簡計算可得反比例函數(shù)的解析式為,將點B(3,m)代入,可得B點坐標,再將A,B兩點坐標代入,化簡計算即可得直線AB的表達式,即是CD的表達式;(2)設E點的坐標為,則可得D點的坐標為,利用,化簡可得,即可得出E點的坐標;(3)由圖像,直接得出結(jié)論即可.【詳解】(1)把點A(,4)代入中,得:解得∴反比例函數(shù)的解析式為將點B(3,m)代入得m=2∴B(3,2)設直線AB的表達式為y=kx+b,則有,解得∴直線AB的表達式為(2)設E點的坐標為令,則∴D點的坐標為DE=6-b∵∴解得:∴E點的坐標為(3)∵A,B,兩點坐標分別為(,4),(3,2),由圖像可知,當時,或【點睛】此題考查了反比例函數(shù)與一次函數(shù)的交點問題以及待定系數(shù)法求解析式.此題難度適中,注意掌握方程思想與分類討論思想的應用.23、(1)8名學生中至少有三類垃圾投放正確的概率為;(2)列表見解析.【解析】直接利用概率公式求解可得;
抽取兩人接受采訪,故利用列表法可得所有等可能結(jié)果.【詳解】解:(1)8名學生中至少有三類垃圾投放正確有5人,故至少有三類垃圾投放正確的概率為;(2)列表如下:【點睛】此題考查的是用列表法或樹狀圖法求概率列表法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品委托中介合同模板
- 小鵬汽車購銷合同范例
- 小區(qū)出租房合同模板
- 企業(yè)維修合同范例
- 工地裝電梯合同范例
- 公廁結(jié)賬合同范例
- 急用錢借款合同范例
- 家庭陪讀服務合同模板
- 安然生豬購銷合同范例
- 廣州美甲店學徒合同范例
- 水生產(chǎn)企業(yè)(自來水公司)水務安全生產(chǎn)三項制度(安全生產(chǎn)責任制、制度、操作規(guī)程)匯編
- 加強學校食堂管理提高食品安全意識(培訓課件)
- 醫(yī)療質(zhì)量管理與控制制度
- 政法系統(tǒng)領(lǐng)導干部專題讀書班學習心得體會范文(三篇)
- 2024年重慶市高考物理試卷(含答案解析)
- 2019新人教版高中生物選擇性必修二全冊重點知識點歸納總結(jié)
- 肝性腦病護理查房包含內(nèi)容課件
- 2023版國開電大本科《高級財務會計》在線形考(任務一至四)試題及答案
- 工業(yè)互聯(lián)網(wǎng)安全技術(shù) 課件全套 魏旻 第1-9章 緒論、工業(yè)互聯(lián)網(wǎng)安全體系架構(gòu) -工業(yè)互聯(lián)網(wǎng)安全測試
- 痛風病完整課件
- 痔瘡患者治療與護理
評論
0/150
提交評論