廣東省佛山市南海區(qū)南海實驗中學2022-2023學年數學九上期末經典模擬試題含解析_第1頁
廣東省佛山市南海區(qū)南海實驗中學2022-2023學年數學九上期末經典模擬試題含解析_第2頁
廣東省佛山市南海區(qū)南海實驗中學2022-2023學年數學九上期末經典模擬試題含解析_第3頁
廣東省佛山市南海區(qū)南海實驗中學2022-2023學年數學九上期末經典模擬試題含解析_第4頁
廣東省佛山市南海區(qū)南海實驗中學2022-2023學年數學九上期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,平行四邊形ABCD中,AC⊥AB,點E為BC邊中點,AD=6,則AE的長為()A.2 B.3 C.4 D.52.如圖,在同一平面直角坐標系中,一次函數y1=kx+b(k、b是常數,且k≠0)與反比例函數y2=(c是常數,且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y(tǒng)1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<23.如圖,平行四邊形的四個頂點分別在正方形的四條邊上.,分別交,,于點,,,且.要求得平行四邊形的面積,只需知道一條線段的長度.這條線段可以是()A. B. C. D.4.如圖,是一個幾何體的三視圖,則這個幾何體是()A.長方體 B.圓柱體 C.球體 D.圓錐體5.在x2□2xy□y2的空格□中,分別填上“+”或“-”,在所得的代數式中,能構成完全平方式的概率是()A.1 B. C. D.6.已知函數的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠37.如圖,△ABC是一張周長為18cm的三角形紙片,BC=5cm,⊙O是它的內切圓,小明用剪刀在⊙O的右側沿著與⊙O相切的任意一條直線剪下△AMN,則剪下的三角形的周長為()A. B. C. D.隨直線的變化而變化8.如圖,二次函數的圖象經過點,下列說法正確的是()A. B. C. D.圖象的對稱軸是直線9.在△ABC中,∠C=90°,∠B=30°,則cosA的值是()A. B. C. D.110.小王拋一枚質地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.二、填空題(每小題3分,共24分)11.拋物線在對稱軸_____(填“左側”或“右側”)的部分是下降的.12.如圖,在中,交于點,交于點.若、、,則的長為_________.13.如圖,在平面直角坐標系中,直線l∥x軸,且直線l分別與反比例函數y=(x>0)和y=﹣(x<0)的圖象交于點P、Q,連結PO、QO,則△POQ的面積為.14.一圓錐的側面積為,底面半徑為3,則該圓錐的母線長為________.15.張華在網上經營一家禮品店,春節(jié)期間準備推出四套禮品進行促銷,其中禮品甲45元/套,禮品乙50元/套,禮品丙70元/套,禮品丁80元/套,如果顧客一次購買禮品的總價達到100元,顧客就少付x元,每筆訂單顧客網上支付成功后,張華會得到支付款的80%.①當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付_________元;②在促銷活動中,為保證張華每筆訂單得到的金額均不低于促銷前總價的六折,則x的最大值為________.16.如圖所示的拋物線形拱橋中,當拱頂離水面2m時,水面寬4m.如果以拱頂為原點建立直角坐標系,且橫軸平行于水面,那么拱橋線的解析式為_____.17.拋物線y=2x2﹣4x+1的對稱軸為直線__.18.正的邊長為,邊長為的正的頂點與點重合,點分別在,上,將沿邊順時針連續(xù)翻轉(如圖所示),直至點第一次回到原來的位置,則點運動路徑的長為(結果保留)三、解答題(共66分)19.(10分)如圖,四邊形ABCD內接于⊙O,∠1至∠6是六個不同位置的圓周角.(1)分別寫出與∠1、∠2相等的圓周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求證:AC⊥BD.20.(6分)數學活動課上老師帶領全班學生測量旗桿高度.如圖垂直于地面的旗桿頂端A垂下一根繩子.小明同學將繩子拉直釘在地上,繩子末端恰好在點C處且測得旗桿頂端A的仰角為75°;小亮同學接著拿起繩子末端向前至D處,拉直繩子,此時測得繩子末端E距離地面1.5m且與旗桿頂端A的仰角為60°根據兩位同學的測量數據,求旗桿AB的高度.(參考數據:sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,結果精確到1米)21.(6分)(1);(2)已知一個幾何體的三視圖如圖所示,求該幾何體的體積.22.(8分)如圖,海中有一個小島,它的周圍海里內有暗礁,今有貨船由西向東航行,開始在島南偏西的處,往東航行海里后到達該島南偏西的處后,貨船繼續(xù)向東航行,你認為貨船在航行途中有沒有觸礁的危險.23.(8分)小亮晚上在廣場散步,圖中線段AB表示站立在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈的位置.(1)請你在圖中畫出小亮站在AB處的影子BE;(2)小亮的身高為1.6m,當小亮離開燈桿的距離OB為2.4m時,影長為1.2m,若小亮離開燈桿的距離OD=6m時,則小亮(CD)的影長為多少米?24.(8分)隨著私家車的增多,“停車難”成了很多小區(qū)的棘手問題.某小區(qū)為解決這個問題,擬建造一個地下停車庫.如圖是該地下停車庫坡道入口的設計示意圖,其中,入口處斜坡的坡角為,水平線.根據規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以提醒駕駛員所駕車輛能否安全駛入.請求出限制高度為多少米,(結果精確到,參考數據:,,).25.(10分)小明同學用紙板制作了一個圓錐形漏斗模型,如圖所示,它的底面半徑,高,求這個圓錐形漏斗的側面積.26.(10分)如圖,在△ABC中,點E在邊AB上,點G是△ABC的重心,聯(lián)結AG并延長交BC于點D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的長.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】由平行四邊形得AD=BC,在Rt△BAC中,點E為BC邊中點,根據直角三角形的中線等于斜邊的一半即可求出AE.解:∵四邊形ABCD是平行四邊形,∴AD=BC=6,∵AC⊥AB,∴△BAC為Rt△BAC,∵點E為BC邊中點,∴AE=BC=.故選B.2、C【解析】一次函數y1=kx+b落在與反比例函數y2=圖象上方的部分對應的自變量的取值范圍即為所求.【詳解】∵一次函數y1=kx+b(k、b是常數,且k≠0)與反比例函數y2=(c是常數,且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y(tǒng)1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數與一次函數的交點問題,利用數形結合是解題的關鍵.3、C【分析】根據圖形證明△AOE≌△COG,作KM⊥AD,證明四邊形DKMN為正方形,再證明Rt△AEH≌Rt△CGF,Rt△DHG≌Rt△BFE,設正方形邊長為a,CG=MN=x,根據正方形的性質列出平行四邊形的面積的代數式,再化簡整理,即可判斷.【詳解】連接AC,EG,交于O點,∵四邊形是平行四邊形,四邊形是正方形,∴GO=EO,AO=CO,又∠AOE=∠COG∴△AOE≌△COG,∴GC=AE,∵NE∥AD,∴四邊形AEND為矩形,∴AE=DN,∴DN=GC=MN作KM⊥AD,∴四邊形DKMN為正方形,在Rt△AEH和Rt△CGF中,∴Rt△AEH≌Rt△CGF,∴AH=CF,∵AD-AH=BC-CF∴DH=BF,同理Rt△DHG≌Rt△BFE,設CG=MN=x,設正方形邊長為a則S△HDG=DH×x+DG×x=S△FBES△HAE=AH×x=S△GCFS平行四邊形EFGH=a2-2S△HDG-2S△HAE=a2-(DH+DG+AH)×x,∵DG=a-x∴S平行四邊形EFGH=a2-(a+a-x)×x=a2-2ax+x2=(a-x)2故只需要知道a-x就可以求出面積BE=a-x,故選C.【點睛】此題主要考查正方形的性質,解題的關鍵是根據題意設出字母,表示出面積進行求解.4、B【分析】根據三視圖的規(guī)律解答:主視圖表示由前向后觀察的物體的視圖;左視圖表示在側面由左向右觀察物體的視圖,俯視圖表示由上向下觀察物體的視圖,由此解答即可.【詳解】解:∵該幾何體的主視圖和左視圖都為長方形,俯視圖為圓∴這個幾何體為圓柱體故答案是:B.【點睛】本題主要考察簡單幾何體的三視圖,熟練掌握簡單幾何體的三視圖是解題的關鍵.5、C【解析】能夠湊成完全平方公式,則2xy前可是“-”,也可以是“+”,但y2前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率為:.故答案為C點睛:讓填上“+”或“-”后成為完全平方公式的情況數除以總情況數即為所求的概率.此題考查完全平方公式與概率的綜合應用,注意完全平方公式的形式.用到的知識點為:概率=所求情況數與總情況數之比.6、B【解析】試題分析:若此函數與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當k=3時,此函數為一次函數,題目要求仍然成立,故本題選B.考點:函數圖像與x軸交點的特點.7、B【分析】如圖,設E、F、G分別為⊙O與BC、AC、MN的切點,利用切線長定理得出BC=BD+CF,DM=MG,F(xiàn)N=GN,AD=AF,進而可得答案.【詳解】設E、F、G分別為⊙O與BC、AC、MN的切點,∵⊙O是△ABC的內切圓,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN與⊙O相切于G,∴DM=MG,F(xiàn)N=GN,∵△ABC的周長為18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周長=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故選:B.【點睛】本題考查切線長定理,從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角;熟練掌握定理是解題關鍵.8、D【分析】根據拋物線與y軸交點的位置即可判斷A選項;根據拋物線與x軸有兩個交點即可判斷B選項;由圖象可知,當x=1時,圖象在x軸的下方可知,故C錯誤;根據圖象經過點兩點,即可得出對稱軸為直線.【詳解】解:A、由圖可知,拋物線交于y軸負半軸,所以c<0,故A錯誤;B、由圖可知,拋物線與x軸有兩個交點,則,故B錯誤;C、由圖象可知,當x=1時,圖象在x軸的下方,則,故C錯誤;D、因為圖象經過點兩點,所以拋物線的對稱軸為直線,故D正確;故選:D.【點睛】本題考查了二次函數圖象與系數的關系,解題的關鍵是掌握二次函數的圖象和性質.9、A【分析】根據特殊角三角函數值,可得答案.【詳解】解:∵△ABC中,∠C=90°,∠B=30°,∴∠A=90°-30°=60°.cosA=cos60°=.故選:A.【點睛】本題考查了特殊角的三角函數值,熟記特殊角三角函數值是解題關鍵.10、B【分析】直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.二、填空題(每小題3分,共24分)11、右側【解析】根據二次函數的性質解題.【詳解】解:∵a=-1<0,

∴拋物線開口向下,頂點是拋物線的最高點,拋物線在對稱軸右側的部分是下降的,

故答案為:右側.點睛:本題考查了二次函數的性質,熟練掌握性質上解題的關鍵.12、6【分析】接運用平行線分線段成比例定理列出比例式,借助已知條件即可解決問題.【詳解】,∵DE∥BC,∴,即,解得:,故答案為:.【點睛】本題主要考查了平行線分線段成比例定理及其應用問題;運用平行線分線段成比例定理正確寫出比例式是解題的關鍵.13、1【分析】根據反比例函數比例系數k的幾何意義得到S△OQM=4,S△OPM=3,然后利用S△POQ=S△OQM+S△OPM進行計算.【詳解】解:如圖,∵直線l∥x軸,∴S△OQM=×|﹣8|=4,S△OPM=×|6|=3,∴S△POQ=S△OQM+S△OPM=1.故答案為1.考點:反比例函數系數k的幾何意義.14、2【分析】圓錐的側面積=底面周長×母線長÷1.【詳解】解:底面半徑為3,則底面周長=6π,設圓錐的母線長為x,圓錐的側面積=×6πx=12π.解得:x=2,故答案為2.15、125【分析】①當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付45+80-5=1元.②設顧客每筆訂單的總價為M元,當0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當M≥100時,0.8(M-x)≥0.6M,對M≥100恒成立,由此能求出x的最大值.【詳解】解:(1)當x=5時,顧客一次購買禮品甲和禮品丁各1套,需要支付:45+80-5=1元.故答案為:1.(2)設顧客一次購買干果的總價為M元,當0<M<100時,張軍每筆訂單得到的金額不低于促銷前總價的六折,當M≥100時,0.8(M-x)≥0.6M,解得,0.8x≤0.2M.∵M≥100恒成立,∴0.8x≤200解得:x≤25.故答案為25.【點睛】本題考查代數值的求法,考查函數性質在生產、生活中的實際應用等基礎知識,考查運算求解能力和應用意識,是中檔題.16、y=x1【解析】根據題意以拱頂為原點建立直角坐標系,即可求出解析式.【詳解】如圖:以拱頂為原點建立直角坐標系,由題意得A(1,?1),C(0,?1),設拋物線的解析式為:y=ax1把A(1,?1)代入,得4a=?1,解得a=?,所以拋物線解析式為y=?x1.故答案為:y=?x1.【點睛】本題考查了二次函數的應用,解決本題的關鍵是根據題意建立平面直角坐標系.17、x=1【詳解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴對稱軸為直線x=1,故答案為:x=1.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).18、【解析】從圖中可以看出翻轉的第一次是一個120度的圓心角,半徑是1,所以弧長=,第二次是以點P為圓心,所以沒有路程,在BC邊上,第一次第二次同樣沒有路程,AC邊上也是如此,點P運動路徑的長為三、解答題(共66分)19、(1)∠6=∠1,∠5=∠2,1°;(2)詳見解析【分析】(1)根據圓的性質可得出與∠1、∠2相等的圓周角,然后計算∠1+∠2+∠3+∠4可得;(2)先得出∠1+∠4=90°,從而得出∠6+∠4=90°,從而證垂直.【詳解】(1)∵∠1和∠6所對應的圓弧相同,∴∠1=∠6同理,∠2=∠∠5∵∠1=∠6,∠2=∠5∴∠1+∠2+∠3+∠4=∠6+∠5+∠3+∠4=1°;(2)∵∠1-∠2=∠3-∠4∴∠1+∠4=∠2+∠3∵∠1+∠2+∠3+∠4=1°∴∠1+∠4=∠2+∠3=90°∵∠1=∠6∴∠6+∠4=90°∴AC⊥BD.【點睛】本題考查圓周角的特點,同弧或等弧所對應的圓周角相等,解題關鍵是得出∠1+∠2+∠3+∠4=1.20、15米.【分析】根據題意分別表示出AB、AF的長,進而得出等式求出答案.【詳解】過E作EF⊥AB于F,設AC=AE=∵AB⊥CD,ED⊥CD,∴四邊形FBDE為矩形,∴,在中∵,∴,∴AB=AF+BF,在中,∵,∴,∴,,∴(米).∴旗桿AB的高度為米.【點睛】本題主要考查了解直角三角形的應用,正確應用銳角三角函數關系是解題關鍵.21、(1);(2)幾何體的體積是1.【分析】(1)化簡各項的三角函數,再把各項相加;(2)原幾何體是正方體截掉一個底面邊長為1,高為4的長方體,由此可求幾何體的體積.【詳解】(1)原式=

=

=

(2)由三視圖知,原幾何體是正方體截掉一個底面邊長為1,高為4的長方體.∴=1∴幾何體的體積是1.【點睛】本題考查了三角函數的混合運算以及幾何體的體積問題,掌握特殊三角函數的值以及幾何體的體積計算方法是解題的關鍵.22、無觸礁的危險,理由見解析【分析】作高AD,由題意可得∠ACD=60°,∠ABC=30°,進而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt△ADC中,利用直角三角形的邊角關系,求出AD與15海里比較即可.【詳解】解:過點A作ADBC,垂足為D∵∠ABC=∠ACD=∴∠BAC==∠ABC∴BC=AC=20∴=AD=20=10所以貨船在航行途中無觸礁的危險.【點睛】本題考查了解直角三角形的應用,解一般三角形的問題一般可以轉化為解直角三角形的問題,正確作出高線是解題的關鍵.23、(1)如圖,BE為所作;見解析;(2)小亮(CD)的影長為3m.【分析】(1)根據光是沿直線傳播的道理可知在小亮由B處沿BO所在的方向行走到達O處的過程中,連接PA并延長交直線BO于點E,則可得到小亮站在AB處的影子;(2)根據燈的光線與人、燈桿、地面形成的兩個直角三角形相似解答即可.【詳解】(1)如圖,連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論