2023屆湖北省天門市多寶鎮(zhèn)第二中學數(shù)學九年級第一學期期末考試試題含解析_第1頁
2023屆湖北省天門市多寶鎮(zhèn)第二中學數(shù)學九年級第一學期期末考試試題含解析_第2頁
2023屆湖北省天門市多寶鎮(zhèn)第二中學數(shù)學九年級第一學期期末考試試題含解析_第3頁
2023屆湖北省天門市多寶鎮(zhèn)第二中學數(shù)學九年級第一學期期末考試試題含解析_第4頁
2023屆湖北省天門市多寶鎮(zhèn)第二中學數(shù)學九年級第一學期期末考試試題含解析_第5頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.某商場舉行投資促銷活動,對于“抽到一等獎的概率為”,下列說法正確的是()A.抽一次不可能抽到一等獎B.抽次也可能沒有抽到一等獎C.抽次獎必有一次抽到一等獎D.抽了次如果沒有抽到一等獎,那么再抽一次肯定抽到一等獎2.如圖,如果∠BAD=∠CAE,那么添加下列一個條件后,仍不能確定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=3.如圖,點在線段上,在的同側作角的直角三角形和角的直角三角形,與,分別交于點,,連接.對于下列結論:①;②;③圖中有5對相似三角形;④.其中結論正確的個數(shù)是()A.1個 B.2個 C.4個 D.3個4.方程是關于x的一元二次方程,則m的值是()A. B.C. D.不存在5.已知如圖,線段AB=60,AD=13,DE=17,EF=7,請問在D,E,F(xiàn),三點中,哪一點最接近線段AB的黃金分割點()A.D點 B.E點 C.F點 D.D點或F點6.的面積為2,邊的長為,邊上的高為,則與的變化規(guī)律用圖象表示大致是()A. B.C. D.7.如圖,在中,,,垂足為點,如果,,那么的長是()A.4 B.6 C. D.8.如圖,分別是的邊上的點,且,相交于點,若,則的值為()A. B. C. D.9.如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F(xiàn),若BE=3,AF=5,則AC的長為()A. B. C.10 D.810.若,則的值等于()A. B. C. D.11.如圖所示,若△ABC∽△DEF,則∠E的度數(shù)為()A.28° B.32° C.42° D.52°12.如圖,在△OAB中,∠AOB=55°,將△OAB在平面內繞點O順時針旋轉到△OA′B′的位置,使得BB′∥AO,則旋轉角的度數(shù)為()A.125° B.70° C.55° D.15°二、填空題(每題4分,共24分)13.二次函數(shù)的圖像開口方向向上,則______0.(用“=、>、<”填空)14.如圖,由邊長為1的小正方形組成的網(wǎng)格中,點為格點(即小正方形的頂點),與相交于點,則的長為_________.15.如圖,在正方形ABCD中,對角線AC、BD交于點O,E是BC的中點,DE交AC于點F,則tan∠BDE=______.16.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.17.如圖,,請補充—個條件:___________,使(只寫一個答案即可).18.二次函數(shù)的最大值是__________.三、解答題(共78分)19.(8分)如圖所示,分別切的三邊、、于點、、,若,,.(1)求的長;(2)求的半徑長.20.(8分)已知關于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一個根為﹣1,求k的值;(2)若此一元二次方程有實數(shù)根,求k的取值范圍.21.(8分)已知AB是⊙O的直徑,C是圓上的點,D是優(yōu)弧ABC的中點.(1)若∠AOC=100°,則∠D的度數(shù)為,∠A的度數(shù)為;(2)求證:∠ADC=2∠DAB.22.(10分)如圖,在中,,是的外接圓,連結OA、OB、OC,延長BO與AC交于點D,與交于點F,延長BA到點G,使得,連接FG.備用圖(1)求證:FG是的切線;(2)若的半徑為4.①當,求AD的長度;②當是直角三角形時,求的面積.23.(10分)一只不透明的袋子中裝有3個黑球、2個白球,每個球除顏色外都相同,從中任意摸出2個球.(1)“其中有1個球是黑球”是事件;(2)求2個球顏色相同的概率.24.(10分)如圖,在中,是邊上的一點,若,求證:.25.(12分)大學生小李和同學一起自主創(chuàng)業(yè)開辦了一家公司,公司對經(jīng)營的盈虧情況在每月的最后一天結算一次.在1-12月份中,該公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關系.(1)求y與x函數(shù)關系式.(2)該公司從哪個月開始“扭虧為盈”(當月盈利)?直接寫出9月份一個月內所獲得的利潤.(3)在前12個月中,哪個月該公司所獲得利潤最大?最大利潤為多少?26.我們把端點都在格點上的線段叫做格點線段.如圖,在7×7的方格紙中,有一格點線段AB,按要求畫圖.(1)在圖1中畫一條格點線段CD將AB平分.(2)在圖2中畫一條格點線段EF.將AB分為1:1.

參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)大量反復試驗時,某事件發(fā)生的頻率會穩(wěn)定在某個常數(shù)的附近,這個常數(shù)就叫做事件概率的估計值,而不是一種必然的結果,可得答案.【詳解】A.“抽到一等獎的概率為”,抽一次也可能抽到一等獎,故錯誤;B.“抽到一等獎的概率為”,抽10次也可能抽不到一等獎,故正確;C.“抽到一等獎的概率為”,抽10次也可能抽不到一等獎,故錯誤;D.“抽到一等獎的概率為”,抽第10次的結果跟前面的結果沒有關系,再抽一次也不一定抽到一等獎,故錯誤;故選B.【點睛】關鍵是理解概率是反映事件的可能性大小的量.概率小的有可能發(fā)生,概率大的有可能不發(fā)生.概率等于所求情況數(shù)與總情況數(shù)之比.2、C【分析】根據(jù)已知及相似三角形的判定方法對各個選項進行分析,從而得到最后答案.【詳解】BADCAE,A,B,D都可判定,選項C中不是夾這兩個角的邊,所以不相似.故選C.【點睛】考查相似三角形的判斷方法,掌握相似三角形常用的判定方法是解題的關鍵.3、D【分析】如圖,設AC與PB的交點為N,根據(jù)直角三角形的性質得到,根據(jù)相似三角形的判定定理得到△BAE∽△CAD,故①正確;根據(jù)相似三角形的性質得到∠BEA=∠CDA,推出△PME∽△AMD,根據(jù)相似三角形的性質得到MP?MD=MA?ME,故②正確;由相似三角形的性質得到∠APM=∠DEM=90,根據(jù)垂直的定義得到AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,于是得到圖中相似三角形有6對,故③不正確.【詳解】如圖,設AC與PB的交點為N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正確;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP?MD=MA?ME,故②正確;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴圖中相似三角形有6對,故③不正確;故選:D.【點睛】本題考查了相似三角形的判定和性質,直角三角形的性質,正確的識別圖形是解題的關鍵.4、B【分析】根據(jù)一元二次方程的定義進行求解即可.【詳解】由題知:,解得,∴故選:B.【點睛】本題考查了利用一元二次方程的定義求參數(shù)的值,熟知一元二次方程的定義是解題的關鍵.5、C【分析】根據(jù)題意先計算出BD=60-13=47,AE=BE=30,AF=37,則E點為AB的中點,則計算BD:AB和AF:AB,然后把計算的結果與0.618比較,則可判斷哪一點最接近線段AB的黃金分割點.【詳解】解:∵線段AB=60,AD=13,DE=17,EF=7,∴BD=60-13=47,AE=BE=30,AF=37,∴BD:AB=47:60≈0.783,AF:AB=37:60=0.617,∴點F最接近線段AB的黃金分割點.故選:C.【點睛】本題考查黃金分割的定義,注意掌握把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中,并且線段AB的黃金分割點有兩個.6、A【分析】根據(jù)三角形面積公式得出與的函數(shù)解析式,根據(jù)解析式作出圖象進行判斷即可.【詳解】根據(jù)題意得∴∵∴與的變化規(guī)律用圖象表示大致是故答案為:A.【點睛】本題考查了反比例函數(shù)的圖象問題,掌握反比例函數(shù)圖象的性質是解題的關鍵.7、C【分析】證明△ADC∽△CDB,根據(jù)相似三角形的性質求出CD、BD,根據(jù)勾股定理求出BC.【詳解】∵∠ACB=90°,

∴∠ACD+∠BCD=90°,

∵CD⊥AB,

∴∠A+∠ACD=90°,

∴∠A=∠BCD,又∠ADC=∠CDB,

∴△ADC∽△CDB,

∴,,

∴,即,

解得,CD=6,

∴,

解得,BD=4,

∴BC=,

故選:C.【點睛】此題考查相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.8、C【分析】根據(jù)題意可證明,再利用相似三角形的性質,相似三角形面積的比等于相似比的平方,即可得出對應邊的比值.【詳解】解:∵∴∴根據(jù)相似三角形面積的比等于相似比的平方,可知對應邊的比為.故選:C.【點睛】本題考查的知識點是相似三角形的性質,主要有①相似三角形周長的比等于相似比;②相似三角形面積的比等于相似比的平方;③相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.9、A【分析】連接AE,由線段垂直平分線的性質得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結AE,設AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【點睛】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關鍵.10、B【分析】將整理成,即可求解.【詳解】解:∵,∴,

故選:B.【點睛】本題考查分式的化簡求值,掌握分式的運算法則是解題的關鍵.11、C【詳解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故選C.12、B【分析】據(jù)兩直線平行,內錯角相等可得,根據(jù)旋轉的性質可得,然后利用等腰三角形兩底角相等可得,即可得到旋轉角的度數(shù).【詳解】,,又,中,,旋轉角的度數(shù)為.故選:.【點睛】本題考查了旋轉的性質,等腰三角形兩底角相等的性質,熟記性質并準確識圖是解題的關鍵.二、填空題(每題4分,共24分)13、>【分析】根據(jù)題意直接利用二次函數(shù)的圖象與a的關系即可得出答案.【詳解】解:因為二次函數(shù)的圖像開口方向向上,所以有>1.故填>.【點睛】本題主要考查二次函數(shù)的性質,掌握二次項系數(shù)a與拋物線的關系是解題的關鍵,圖像開口方向向上,>1;圖像開口方向向下,<1.14、【分析】如圖所示,由網(wǎng)格的特點易得△CEF≌△DBF,從而可得BF的長,易證△BOF∽△AOD,從而可得AO與AB的關系,然后根據(jù)勾股定理可求出AB的長,進而可得答案.【詳解】解:如圖所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案為:【點睛】本題以網(wǎng)格為載體,考查了全等三角形的判定和性質、相似三角形的判定和性質以及勾股定理等知識,屬于常考題型,熟練掌握上述基本知識是解答的關鍵.15、【分析】設AD=DC=a,根據(jù)勾股定理求出AC,易證△AFD∽△CFE,根據(jù)相似三角形的性質,可得:=2,進而求得CF,OF的長,由銳角的正切三角函數(shù)定義,即可求解.【詳解】∵四邊形ABCD是正方形,∴∠ADC=90°,AC⊥BD,設AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中點,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案為:.【點睛】本題主要考查相似三角形的判定和性質定理以及正切三角函數(shù)的定義,根據(jù)題意,設AD=DC=a,表示出OF,OD的長度,是解題的關鍵.16、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.17、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【分析】根據(jù)相似三角形的判定方法,已知一組角相等則再添加一組相等的角或夾該角的兩個邊對應成比例即可推出兩三角形相似.【詳解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴當∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE時兩三角形相似.故答案為:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【點睛】本題考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.18、1【分析】二次函數(shù)的頂點式在x=h時有最值,a>0時有最小值,a<0時有最大值,題中函數(shù),故其在時有最大值.【詳解】解:∵,∴有最大值,當時,有最大值1.故答案為1.【點睛】本題考查了二次函數(shù)頂點式求最值,熟練掌握二次函數(shù)的表達式及最值的確定方法是解題的關鍵.三、解答題(共78分)19、(1)4;(2)2【分析】(1)設AD=x,根據(jù)切線長定理得到AF=AD,BE=BD,CE=CF,根據(jù)關系式列得方程解答即可;(2)連接OD、OE、OF、OA、OB、OC,將△ABC分為三個三角形:△AOB、△BOC、△AOC,再用面積法求得半徑即可.【詳解】解:(1)設,分別切的三邊、、于點、、,,,,,,,,即,得,的長為.(2)如圖,連接OD、OE、OF、OA、OB、OC,則OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF=2,∵,,,∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠B是直角,∴△ABC的面積=,∴,∴OD=2,即的半徑長為2.【點睛】此題考查圓的性質,切線長定理,利用面積法求得圓的半徑,是一道圓的綜合題.20、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判別式是非負數(shù),且二次項系數(shù)不等于2.【詳解】解:(2)將x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有實數(shù)根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范圍是k≤5且k≠2.21、(1)50°,25°;(2)見解析【分析】(1)連接OD.證明△AOD≌△COD即可解決問題.(2)利用全等三角形的性質,等腰三角形的性質解決問題即可.【詳解】(1)解:連接OD.∵,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案為50°,25°.(2)證明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.【點睛】本題考查的是圓的綜合,難度中等,運用到了圓中的基本性質以及全等三角形的相關知識需要熟練掌握.22、(1)見解析;(2)①,②當時,;當時,.【分析】(1)連接AF,由圓周角定理的推論可知,根據(jù)等腰三角形的性質及圓周角定理的推論可證,,從而可得,然后根據(jù)切線的判定方法解答即可;(2)①連接CF,根據(jù)“SSS”證明,由全等三角形及等腰三角形的性質可得,進而可證,由平行線分線段成比例定理可證,可求,然后由相交弦定理求解即可;②分兩種情況求解即可,(i)當時,(ii)當時.【詳解】(1)連接AF,∵BF為的直徑,∴,,∴,∵,∴,∵,,∴,∴,即.又∵OF為半徑,∴FG是的切線.(2)①連接CF,則,∵AB=AC,OB=OC,OA=OA,∴,∴,∴,∴,∴.∵半徑是4,,∴,,∴,即,又由相交弦定理可得:,∴,即,∴(舍負);(2)②∵為直角三角形,不可能等于.∴(i)當時,則,由于,∴,,∴,∴,,∴;(ii)當時,∵,∴是等腰直角三角形,∴,延長AO交BC于點M,∵AB=AC,∴弧AB=弧AC,∴,∴,∴,∴.【點睛】本題考查了圓周角定理的推論,切線的判定,垂徑定理,全等三角形的判定與性質,解直角三角形,平行線分線段成比例定理,三角形的面積公式,熟練掌握圓的有關定理以及分類討論的思想是解答本題的關鍵.23、(1)隨機(2)【解析】試題分析:(1)直接利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論