2023屆湖南省邵陽市洞口縣高三下第一次測試數(shù)學(xué)試題含解析_第1頁
2023屆湖南省邵陽市洞口縣高三下第一次測試數(shù)學(xué)試題含解析_第2頁
2023屆湖南省邵陽市洞口縣高三下第一次測試數(shù)學(xué)試題含解析_第3頁
2023屆湖南省邵陽市洞口縣高三下第一次測試數(shù)學(xué)試題含解析_第4頁
2023屆湖南省邵陽市洞口縣高三下第一次測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數(shù)為()A. B. C. D.2.如圖,中,點D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得3.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直4.設(shè)函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.5.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行6.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③7.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.8.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè)分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.10.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個11.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.1212.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的終邊過點,若,則__________.14.已知隨機變量服從正態(tài)分布,,則__________.15.已知全集,,則________.16.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.18.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值.19.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.21.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.22.(10分)在平面直角坐標系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運算等有關(guān)方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應(yīng)用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.2.A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.3.D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.4.C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應(yīng)滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.5.B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.6.C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.7.A【解析】

建立平面直角坐標系,求出直線,設(shè)出點,通過,找出與的關(guān)系.通過數(shù)量積的坐標表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用.8.A【解析】

計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點睛】本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.9.A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.10.B【解析】

圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.11.B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B12.D【解析】

使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.14.0.22.【解析】

正態(tài)曲線關(guān)于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可?!驹斀狻俊军c睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎(chǔ)題.15.【解析】

利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎(chǔ)題.16.2025【解析】

利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.;證明見解析.【解析】

當時,集合共有個子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當時,集合共有個子集,所以;①當時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設(shè)當時,存在有序集合組滿足題意,且,則當時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點睛】本題考查集合的自己個數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.18.(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點睛】本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設(shè)出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式19.(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【解析】

(Ⅰ)對函數(shù)進行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;(Ⅱ)對函數(shù)進行求導(dǎo),由題意知,為增函數(shù)等價于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式求最值即可求出實數(shù)的取值范圍.【詳解】(Ⅰ)由題意知,函數(shù)的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.(Ⅱ)由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運算求解能力和邏輯推理能力;利用導(dǎo)數(shù)把函數(shù)單調(diào)性問題轉(zhuǎn)化為不等式恒成立問題是求解本題的關(guān)鍵;屬于中檔題、??碱}型.20.(1);(2)見解析.【解析】

(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;(2)分別設(shè)切點橫坐標為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因為,則在上恒成立等價于在上恒成立;又,所以,即.(2)設(shè)的切點橫坐標為,則切線方程為……①設(shè)的切點橫坐標為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,函數(shù)在區(qū)間上單調(diào)遞增,,使得時總有又時,在上總有解綜上,函數(shù)與總存在公切線.【點睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的恒成立問題,導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)證明方程有解,屬于難題.21.(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論