




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知一組數(shù)據(jù)共有個數(shù),前面?zhèn)€數(shù)的平均數(shù)是,后面?zhèn)€數(shù)的平均數(shù)是,則這個數(shù)的平均數(shù)是()A. B. C. D.2.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個3.如圖,在正方形網(wǎng)格中,每個小正方形的邊長是個單位長度,以點為位似中心,在網(wǎng)格中畫,使與位似,且與的位似比為,則點的坐標可以為()A. B. C. D.4.如圖,在直線上有相距的兩點和(點在點的右側(cè)),以為圓心作半徑為的圓,過點作直線.將以的速度向右移動(點始終在直線上),則與直線在______秒時相切.A.3 B.3.5 C.3或4 D.3或3.55.如圖,在平面直角坐標系中,點O為坐標原點,平行四邊形OABC的頂點A在反比例函數(shù)上,頂點B在反比例函數(shù)上,點C在x軸的正半軸上,則平行四邊形OABC的面積是()A. B. C.4 D.66.如圖,⊙O中,點D,A分別在劣弧BC和優(yōu)弧BC上,∠BDC=130°,則∠BOC=()A.120° B.110° C.105° D.100°7.如圖,將Rt△ABC繞直角頂點A,沿順時針方向旋轉(zhuǎn)后得到Rt△AB1C1,當點B1恰好落在斜邊BC的中點時,則∠B1AC=()A.25° B.30° C.40° D.60°8.二次函數(shù)y=x2-2x+4A.y=(x-1)2C.y=(x-2)29.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3cm,那么PP′的長為()A. B. C. D.10.下列正多邊形中,繞其中心旋轉(zhuǎn)72°后,能和自身重合的是()A.正方形 B.正五邊形C.正六邊形 D.正八邊形11.如圖,某小區(qū)規(guī)劃在一個長50米,寬30米的矩形場地ABCD上,修建三條同樣寬的道路,使其中兩條與AB平行,另一條與AD平行,其余部分種草,若使每塊草坪面積都為178平方米,設(shè)道路寬度為x米,則()A.(50﹣2x)(30﹣x)=178×6B.30×50﹣2×30x﹣50x=178×6C.(30﹣2x)(50﹣x)=178D.(50﹣2x)(30﹣x)=17812.下列說法正確的是()A.對應邊都成比例的多邊形相似 B.對應角都相等的多邊形相似C.邊數(shù)相同的正多邊形相似 D.矩形都相似二、填空題(每題4分,共24分)13.如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑長為,母線長為.在母線上的點處有一塊爆米花殘渣,且,一只螞蟻從杯口的點處沿圓錐表面爬行到點,則此螞蟻爬行的最短距離為____.14.已知在反比例函數(shù)圖象的任一分支上,都隨的增大而增大,則的取值范圍是______.15.我國南宋數(shù)學家楊輝曾提出這樣一個問題:“直田積(矩形面積),八百六十四(平方步),只云闊(寬)不及長一十二步(寬比長少12步),問闊及長各幾步.”如果設(shè)矩形田地的長為x步,那么根據(jù)題意列出的方程為_____.16.在△ABC中,∠C=90°,cosA=,則tanA等于.17.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.18.已知是方程的一個根,則方程另一個根是________.三、解答題(共78分)19.(8分)已知是⊙的直徑,為等腰三角形,且為底邊,請僅用無刻度的直尺完成下列作圖.(1)在圖①中,點在圓上,畫出正方形;(2)在圖②中,畫菱形.20.(8分)問題情境:在綜合實踐課上,老師讓同學們以“菱形紙片的剪拼”為主題開展數(shù)學活動,如圖(1),將一張菱形紙片ABCD(∠BAD=60°)沿對角線AC剪開,得到△ABC和△ACD操作發(fā)現(xiàn):(1)將圖(1)中的△ABC以A為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn)角α(0°<α<60°)得到如圖(2)所示△ABC′,分別延長BC′和DC交于點E,發(fā)現(xiàn)CE=C′E.請你證明這個結(jié)論.(2)在問題(1)的基礎(chǔ)上,當旋轉(zhuǎn)角α等于多少度時,四邊形ACEC′是菱形?請你利用圖(3)說明理由.拓展探究:(3)在滿足問題(2)的基礎(chǔ)上,過點C′作C′F⊥AC,與DC交于點F.試判斷AD、DF與AC的數(shù)量關(guān)系,并說明理由.21.(8分)一家醫(yī)院某天出生了3個嬰兒,假設(shè)生男生女的機會相同,那么這3個嬰兒中,出現(xiàn)1個男嬰、2個女嬰的概率是多少?22.(10分)圖①、圖②均是6×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點.線段AB的端點均在格點上,按下列要求畫出圖形.(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.23.(10分)如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,連接,點為軸上一點,,連接.(1)求反比例函數(shù)與一次函數(shù)的解析式;(2)求的面積.24.(10分)如圖,與是位似圖形,點O是位似中心,,,求DE的長.25.(12分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半徑;(2)求圖中陰影部分的面積.26.閱讀以下材料,并按要求完成相應地任務:萊昂哈德·歐拉(LeonhardEuler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.下面是該定理的證明過程(部分):延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),∴△MDI∽△ANI,∴,∴①,如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,∵DE是⊙O的直徑,∴∠DBE=90°,∵⊙I與AB相切于點F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所對圓周角相等),∴△AIF∽△EDB,∴,∴②,任務:(1)觀察發(fā)現(xiàn):,(用含R,d的代數(shù)式表示);(2)請判斷BD和ID的數(shù)量關(guān)系,并說明理由;(3)請觀察式子①和式子②,并利用任務(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;(4)應用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為cm.
參考答案一、選擇題(每題4分,共48分)1、C【分析】由題意可以求出前14個數(shù)的和,后6個數(shù)的和,進而得到20個數(shù)的總和,從而求出20個數(shù)的平均數(shù).【詳解】解:由題意得:(10×14+15×6)÷20=11.5,故選:C.【點睛】此題考查平均數(shù)的意義和求法,求出這些數(shù)的總和,再除以總個數(shù)即可..2、C【詳解】試題解析:①∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,所以①錯誤;②∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>0,∵拋物線與y軸交點在x軸上方,∴c>0,∴abc>0,所以②正確;③∵x=﹣1時,y<0,即a﹣b+c<0,∵對稱軸為直線x=﹣1,∴,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正確;④∵拋物線的對稱軸為直線x=﹣1,∴x=﹣2和x=0時的函數(shù)值相等,即x=﹣2時,y>0,∴4a﹣2b+c>0,所以④正確.所以本題正確的有:②③④,三個,故選C.3、B【解析】利用位似性質(zhì)和網(wǎng)格特點,延長CA到A1,使CA1=2CA,延長CB到B1,使CB1=2CB,則△A1B1C1滿足條件;或延長AC到A1,使CA1=2CA,延長BC到B1,使CB1=2CB,則△A1B1C1也滿足條件,然后寫出點B1的坐標.【詳解】解:由圖可知,點B的坐標為(3,-2),
如圖,以點C為位似中心,在網(wǎng)格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,
則點B1的坐標為(4,0)或(-8,0),位于題目圖中網(wǎng)格點內(nèi)的是(4,0),
故選:B.【點睛】本題考查了位似變換及坐標與圖形的知識,解題的關(guān)鍵是根據(jù)兩圖形的位似比畫出圖形,注意有兩種情況.4、C【分析】根據(jù)與直線AB的相對位置分類討論:當在直線AB左側(cè)并與直線AB相切時,根據(jù)題意,先計算運動的路程,從而求出運動時間;當在直線AB右側(cè)并與直線AB相切時,原理同上.【詳解】解:當在直線AB左側(cè)并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO-=6cm∵以的速度向右移動∴此時的運動時間為:÷2=3s;當在直線AB右側(cè)并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO+=8cm∵以的速度向右移動∴此時的運動時間為:÷2=4s;綜上所述:與直線在3或4秒時相切故選:C.【點睛】此題考查的是直線與圓的位置關(guān)系:相切和動圓問題,掌握相切的定義和行程問題公式:時間=路程÷速度是解決此題的關(guān)鍵.5、C【分析】作BD⊥x軸于D,延長BA交y軸于E,然后根據(jù)平行四邊形的性質(zhì)和反比例函數(shù)系數(shù)k的幾何意義即可求得答案.【詳解】解:如圖作BD⊥x軸于D,延長BA交y軸于E,∵四邊形OABC是平行四邊形,∴AB∥OC,OA=BC,∴BE⊥y軸,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根據(jù)反比例函數(shù)系數(shù)k的幾何意義得,S矩形BDOE=5,S△AOE=,∴平行四邊形OABC的面積,故選:C.【點睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義、平行四邊形的性質(zhì)等,有一定的綜合性6、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì),對角互補可知,∠D+∠BAC=180°,求出∠D,再利用圓周角定理即可得出.【詳解】解:∵四邊形ABDC為圓內(nèi)接四邊形∴∠A+∠BDC=180°∵∠BDC=130°∴∠A=50°∴∠BOC=2∠A=100°故選:D.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的性質(zhì)是解題的關(guān)鍵.7、B【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得AB1=BB1,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AB1=AB,旋轉(zhuǎn)角等于∠BAB1,則可判斷△ABB1為等邊三角形,所以∠BAB1=60°,從而得出結(jié)論.【詳解】解:∵點B1為斜邊BC的中點,∴AB1=BB1,∵△ABC繞直角頂點A順時針旋轉(zhuǎn)到△AB1C1的位置,∴AB1=AB,旋轉(zhuǎn)角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1為等邊三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣60°=30°.故選:B.【點睛】本題主要考察旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵是判斷出△ABB1為等邊三角形.8、B【解析】試題分析:設(shè)原正方形的邊長為xm,依題意有:(x﹣1)(x﹣2)=18,故選C.考點:由實際問題抽象出一元二次方程.9、D【分析】由題意易證,則有,進而可得,最后根據(jù)勾股定理可求解.【詳解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故選D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì)與判定,熟練掌握旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì)與判定是解題的關(guān)鍵.10、B【解析】選項A,正方形的最小旋轉(zhuǎn)角度為90°,繞其中心旋轉(zhuǎn)90°后,能和自身重合;選項B,正五邊形的最小旋轉(zhuǎn)角度為72°,繞其中心旋轉(zhuǎn)72°后,能和自身重合;選項C,正六邊形的最小旋轉(zhuǎn)角度為60°,繞其中心旋轉(zhuǎn)60°后,能和自身重合;選項D,正八邊形的最小旋轉(zhuǎn)角度為45°,繞其中心旋轉(zhuǎn)45°后,能和自身重合.故選B.11、A【分析】設(shè)道路的寬度為x米.把道路進行平移,使六塊草坪重新組合成一個矩形,根據(jù)矩形的面積公式即可列出方程.【詳解】解:設(shè)橫、縱道路的寬為x米,把兩條與AB平行的道路平移到左邊,另一條與AD平行的道路平移到下邊,則六塊草坪重新組合成一個矩形,矩形的長、寬分別為(50﹣2x)米、(30﹣x)米,所以列方程得(50﹣2x)×(30﹣x)=178×6,故選:A.【點睛】本題考查了由實際問題抽象出一元二次方程,對圖形進行適當?shù)钠揭剖墙忸}的關(guān)鍵.12、C【解析】試題分析:根據(jù)相似圖形的定義,對選項一一分析,排除錯誤答案.解:A、對應邊都成比例的多邊形,屬于形狀不唯一確定的圖形,故錯誤;B、對應角都相等的多邊形,屬于形狀不唯一確定的圖形,故錯誤;C、邊數(shù)相同的正多邊形,形狀相同,但大小不一定相同,故正確;D、矩形屬于形狀不唯一確定的圖形,故錯誤.故選C.考點:相似圖形.點評:本題考查相似變換的定義,即圖形的形狀相同,但大小不一定相同的是相似形.二、填空題(每題4分,共24分)13、【解析】要求螞蟻爬行的最短距離,需將圓錐的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】解:,底面周長,將圓錐側(cè)面沿剪開展平得一扇形,此扇形的半徑,弧長等于圓錐底面圓的周長設(shè)扇形圓心角度數(shù)為,則根據(jù)弧長公式得:,,即展開圖是一個半圓,點是展開圖弧的中點,,連接,則就是螞蟻爬行的最短距離,在中由勾股定理得,,,即螞蟻爬行的最短距離是.故答案為:.【點睛】考查了平面展開最短路徑問題,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決.14、【分析】根據(jù)反比例函數(shù)的圖象與性質(zhì)即可求出k的范圍.【詳解】解:由題意可知:,
∴,故答案為:.【點睛】本題考查反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練運用反比例函數(shù)的性質(zhì),本題屬于基礎(chǔ)題型.15、x(x﹣12)=1【分析】如果設(shè)矩形田地的長為x步,那么寬就應該是(x﹣12)步,根據(jù)面積為1,即可得出方程.【詳解】解:設(shè)矩形田地的長為x步,那么寬就應該是(x﹣12)步.根據(jù)矩形面積=長×寬,得:x(x﹣12)=1.故答案為:x(x﹣12)=1.【點睛】本題考查一元二次方程的實際應用,讀懂題意根據(jù)面積公式列出方程是解題的關(guān)鍵.16、.【解析】試題分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可設(shè).∴根據(jù)勾股定理可得.∴.考點:1.銳角三角函數(shù)定義;2.勾股定理.17、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關(guān)鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉(zhuǎn)換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.18、1【分析】設(shè)方程另一個根為x1,根據(jù)根與系數(shù)的關(guān)系得到-1?x1=-1,然后解一次方程即可.【詳解】設(shè)方程另一個根為x1,根據(jù)題意得-1?x1=-1,所以x1=1.故答案為1.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.三、解答題(共78分)19、(1)詳見解析;(2)詳見解析.【分析】(1)過點A作圓的直徑與圓的交點即為點D;
(2)過AB、AC與圓的交點作圓的直徑,與圓相交于兩點,再以點B、C為端點、過所得兩點作射線,交點即為點D.【詳解】(1)如圖①,正方形即為所求(2)如圖②,菱形即為所求【點睛】本題主要考查作圖-復雜作圖,熟練掌握圓周角定理、等腰三角形的性質(zhì)及菱形的判定與性質(zhì)是解題的關(guān)鍵.20、(1)見解析;(2)當α=30°時,四邊形AC′EC是菱形,理由見解析;(3)AD+DF=AC,理由見解析【分析】(1)先判斷出∠ACC′=∠AC′C,進而判斷出∠ECC′=∠EC′C,即可得出結(jié)論;
(2)判斷出四邊形AC′EC是平行四邊形,即可得出結(jié)論;
(3)先判斷出HAC′是等邊三角形,得出AH=AC′,∠H=60°,再判斷出△HDF是等邊三角形,即可得出結(jié)論.【詳解】(1)證明:如圖2,連接CC′,∵四邊形ABCD是菱形,∴∠ACD=∠AC′B=30°,AC=AC′,∴∠ACC′=∠AC′C,∴∠ECC′=∠EC′C,∴CE=C′E;(2)當α=30°時,四邊形AC′EC是菱形,理由:∵∠DCA=∠CAC′=∠AC′B=30°,∴CE∥AC′,AC∥C′E,∴四邊形AC′EC是平行四邊形,又∵CE=C′E,∴四邊形AC′EC是菱形;(3)AD+DF=AC.理由:如圖4,分別延長CF與AD交于點H,∵∠DAC=∠C′AC=30°,C′F⊥AC,∴∠AC′H=∠DAC′=60°,∴△HAC′是等邊三角形,∴AH=AC′,∠H=60°,又∵AD=DC,∴∠DAC=∠DCA=30°,∴∠HDC=∠DAC+∠DCA=60°,∴△HDF是等邊三角形,∴DH=DF,∴AD+DF=AD+DH=AH.∵AC′=AC,∴AC=AD+DF.【點睛】此題是四邊形綜合題,主要考查了旋轉(zhuǎn)的旋轉(zhuǎn),等邊三角形的判定和旋轉(zhuǎn),菱形的判定和性質(zhì),判斷出△HAC′是等邊三角形是解本題的關(guān)鍵.21、【解析】本題先利用樹狀圖,求出醫(yī)院某天出生了3個嬰兒的8中等可能性,再求出出現(xiàn)1個男嬰、2個女嬰有三種,概率為.【詳解】解:用樹狀圖來表示出生嬰兒的情況,如圖所示.在這8種情況中,一男兩女的情況有3種,則概率為.【點睛】本題利用樹狀圖比較合適,利用列表不太方便.一般來說求等可能性,只有兩個層次,既可以用樹狀圖,又可以用列表;有三個層次時,適宜用樹狀圖求出所有的等可能性.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)如圖①點C即為所求作的點;見解析;(2)如圖②,點D即為所求作的點,見解析.【分析】(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.【詳解】解:(1)如圖①點C即為所求作的點;(2)如圖②,點D即為所求作的點.【點睛】本題考查了作圖——應用與設(shè)計作圖,解直角三角形.解決本題的關(guān)鍵是準確畫圖.23、(1)y1=x+1,;(2)14【分析】(1)將分別代入兩個函數(shù)解析式得到方程組,解方程組后即可得出函數(shù)解析式;(2)根據(jù)勾股定理得出OD=OA=5,根據(jù)題意得出,OC=1,CD=4;最后根據(jù)S△ABD=S△DCB+S△DCA即可得出答案.【詳解】解:(1)由題意得,解得,∴,∴y1=x+1,(2)由勾股定理得,A(3,4)∴OA=,∴OD=OA=5,當y1=0時,0=x+1∴x=-1,OC=1,CD=4S△ABD=S△DCB+S△DCA=.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,代入求值法是解題的關(guān)鍵.24、1【分析】已知△ABC與△DEF是位似圖形,且OA=AD,則位似比是OB:OE=1:2,從而可得DE.【詳解】解:∵△ABC與△DEF是位似圖形,
∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育技術(shù)與應用創(chuàng)新題庫
- 2025商業(yè)地產(chǎn)租賃合同(辦公)
- 2025年大連房屋租賃合同樣本下載
- 軟件測試流程與技巧指南
- 2025年版標準合同范本模板
- 中國蠶絲綢文化知到課后答案智慧樹章節(jié)測試答案2025年春浙江大學
- 2025辦公室租賃合同范文
- 科技行業(yè)人工智能應用研究與產(chǎn)品開發(fā)方案
- 通訊設(shè)備行業(yè)5G通訊設(shè)備研發(fā)與生產(chǎn)方案
- 農(nóng)業(yè)科技研發(fā)推廣方案
- 農(nóng)業(yè)機械學育苗移栽機械
- 澳大利亞PSC檢查經(jīng)過
- 01-14江蘇大學車輛工程考研復試真題答案
- TMYZX 001-2021 釀酒專用小麥原糧
- 2023年湖北國土資源職業(yè)學院高職單招(數(shù)學)試題庫含答案解析
- GB/T 37910.1-2019焊縫無損檢測射線檢測驗收等級第1部分:鋼、鎳、鈦及其合金
- 雷鋒叔叔你在哪里教學反思
- (新版)國家統(tǒng)計執(zhí)法證資格考試備考題庫(含答案)
- 項目驗收單標準模板
- 小學 三年級 心理健康《最好的老師-興趣的作用》教學設(shè)計
- DB12T 1040-2021 建筑工程規(guī)劃管理技術(shù)規(guī)范
評論
0/150
提交評論