2023屆江蘇省揚州區(qū)值、梅嶺中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023屆江蘇省揚州區(qū)值、梅嶺中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023屆江蘇省揚州區(qū)值、梅嶺中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023屆江蘇省揚州區(qū)值、梅嶺中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023屆江蘇省揚州區(qū)值、梅嶺中學九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
免費預覽已結(jié)束,剩余19頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,將△ABC繞點A按逆時針方向旋轉(zhuǎn)100°,得到△AB1C1,若點B1在線段BC的延長線上,則∠BB1C1的大小為()A.70° B.80° C.84° D.86°2.若x1,x2是一元二次方程5x2+x﹣5=0的兩根,則x1+x2的值是()A. B. C.1 D.﹣13.要使有意義,則x的取值范圍為()A.x≤0 B.x≥-1 C.x≥0 D.x≤-14.若關于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>05.如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F,若BC=4,∠CBD=30°,則AE的長為()A. B. C. D.6.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.正五邊形 D.圓7.如圖,矩形矩形,連結(jié),延長分別交、于點、,延長、交于點,一定能求出面積的條件是()A.矩形和矩形的面積之差 B.矩形和矩形的面積之差C.矩形和矩形的面積之差 D.矩形和矩形的面積之差8.下列幾何體中,同一個幾何體的主視圖與左視圖不同的是()A. B. C. D.9.如圖,在中,,,則的值是()A. B.1 C. D.10.如圖,在△ABC中,點D是在邊BC上,且BD=2CD,AB=a,BC=b,那么AD等于()A.AD=a+b B.AD=23a+23b C.AD=a-23b二、填空題(每小題3分,共24分)11.點A(1,-2)關于原點對稱的點A1的坐標為________.12.如圖,在中,是斜邊的垂直平分線,分別交于點,若,則______.13.如圖,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,則DE的長為_____.14.三角形兩邊的長分別是8和6,第三邊的長是一元二次方程的一個實數(shù)根,則該三角形的面積是.15.關于x的方程的解是,(a,m,b均為常數(shù),),則關于x的方程的解是________.16.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.17.如圖,在矩形中,點為的中點,交于點,連接,下列結(jié)論:①;②;③;④若,則.其中正確的結(jié)論是______________.(填寫所有正確結(jié)論的序號)18.如圖,已知點A的坐標為(4,0),點B的坐標為(0,3),在第一象限內(nèi)找一點P(a,b),使△PAB為等邊三角形,則2(a-b)=___________.三、解答題(共66分)19.(10分)定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結(jié)AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.20.(6分)操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點。如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。探究:(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為___,周長___.(2)三角板繞點P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關系?并結(jié)合圖②加以證明;(3)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。21.(6分)在平面直角坐標系中,直線與反比例函數(shù)圖象的一個交點為,求的值.22.(8分)如圖,正方形ABCD,△ABE是等邊三角形,M是正方形ABCD對角線AC(不含點A)上任意一點,將線段AM繞點A逆時針旋轉(zhuǎn)60°得到AN,連接EN、DM.求證:EN=DM.23.(8分)如圖,點、、都在半徑為的上,過點作交的延長線于點,連接,已知.(1)求證:是的切線;(2)求圖中陰影部分的面積.24.(8分)在Rt△ABC中,∠ACB=90°,AC=BC=3,點D是斜邊AB上一動點(點D與點A、B不重合),連接CD,將CD繞點C順時針旋轉(zhuǎn)90°得到CE,連接AE,DE.(1)求△ADE的周長的最小值;(2)若CD=4,求AE的長度.25.(10分)某養(yǎng)豬場對豬舍進行噴藥消毒.在消毒的過程中,先經(jīng)過的藥物集中噴灑,再封閉豬舍,然后再打開窗戶進行通風.已知室內(nèi)每立方米空氣中含藥量()與藥物在空氣中的持續(xù)時間()之間的函數(shù)圖象如圖所示,其中在打開窗戶通風前與分別滿足兩個一次函數(shù),在通風后與滿足反比例函數(shù).(1)求反比例函數(shù)的關系式;(2)當豬舍內(nèi)空氣中含藥量不低于且持續(xù)時間不少于,才能有效殺死病毒,問此次消毒是否有效?26.(10分)解答下列問題:(1)計算:;(2)解方程:;

參考答案一、選擇題(每小題3分,共30分)1、B【分析】由旋轉(zhuǎn)的性質(zhì)可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可求得∠B=∠BB1A=∠AB1C1=40°,從而可求得∠BB1C1=80°.【詳解】由旋轉(zhuǎn)的性質(zhì)可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故選B.【點睛】本題主要考查的是旋轉(zhuǎn)的性質(zhì),由旋轉(zhuǎn)的性質(zhì)得到△ABB1為等腰三角形是解題的關鍵.2、B【分析】利用計算即可求解.【詳解】根據(jù)題意得x1+x2=﹣.故選:B.【點睛】本題考查一元二次方程根與系數(shù)的關系,解題的關鍵是熟知一元二次方程兩根之和與兩根之積與系數(shù)之間的關系.3、B【分析】根據(jù)二次根式有意義有條件進行求解即可.【詳解】要使有意義,則被開方數(shù)要為非負數(shù),即,∴,故選B.【點睛】本題考查了二次根式有意義的條件,熟知二次根式有意義的條件是被開方數(shù)為非負數(shù)是解題的關鍵.4、B【解析】根據(jù)一元二次方程定義,首先要求的二次項系數(shù)不為零,再根據(jù)已知條件,方程有兩個不相等的實數(shù)根,令根的判別式大于零即可.【詳解】解:由題意得,解得,;且,即,解得.綜上所述,且.【點睛】本題主要考查一元二次方程的定義和根的判別式,理解掌握定義,熟練運用根的判別式是解答關鍵.5、D【分析】如圖,作EH⊥AB于H,利用∠CBD的余弦可求出BD的長,利用∠ABD的余弦可求出AB的長,利用∠EBH的正弦和余弦可求出BH、HE的長,即可求出AH的長,利用勾股定理求出AE的長即可.【詳解】如圖,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵點E為BC中點,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故選:D.【點睛】本題考查解直角三角形的應用,正確作出輔助線構建直角三角形并熟記三角函數(shù)的定義是解題關鍵.6、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、平行四邊形不是軸對稱圖形,是中心對稱圖形,故B錯誤;C、正五邊形是軸對稱圖形,不是中心對稱圖形,故C錯誤;D、圓是軸對稱圖形,也是中心對稱圖形,故D正確.故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱的定義,根據(jù)定義得出圖形形狀是解決問題的關鍵.7、B【分析】根據(jù)相似多邊形的性質(zhì)得到,即AF·BC=AB·AH①.然后根據(jù)IJ∥CD可得,,再結(jié)合以及矩形中的邊相等可以得出IJ=AF=DE.最后根據(jù)S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,結(jié)合①②可得出結(jié)論.【詳解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面積的條件是知道矩形ABJH和矩形HDEG的面積之差.故選:B.【點睛】本題考查了相似多邊形的性質(zhì),矩形的性質(zhì)等知識,正確的識別圖形及運用相關性質(zhì)是解題的關鍵.8、A【分析】主視圖、左視圖、俯視圖是分別從正面、左側(cè)面、上面看,得到的圖形,根據(jù)要求判斷每個立體圖形對應視圖是否不同即可.【詳解】解:A.圓的主視圖是矩形,左視圖是圓,故兩個視圖不同,正確.B.正方體的主視圖與左視圖都是正方形,錯誤.C.圓錐的主視圖和俯視圖都是等腰三角形,錯誤.D.球的主視圖與左視圖都是圓,錯誤.故選:A【點睛】簡單幾何體的三視圖,此類型題主要看清題目要求,判斷的是哪種視圖即可.9、A【分析】利用相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方得到,即可解決問題.【詳解】∵,∴,∴,∴,故選:A.【點睛】本題考查相似三角形的判定和性質(zhì),解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.10、D【解析】利用平面向量的加法即可解答.【詳解】解:根據(jù)題意得BD=23AD=AB+BD=故選D.【點睛】本題考查平面向量的加法及其幾何意義,涉及向量的數(shù)乘,屬基礎題.二、填空題(每小題3分,共24分)11、(-1,2)【分析】根據(jù)關于原點對稱的點的橫坐標與縱坐標都互為相反數(shù)解答.【詳解】解:∵點A(1,-2)與點A1(-1,2)關于原點對稱,∴A1(-1,2).故答案為:(-1,2).【點睛】本題考查了關于原點對稱的點的坐標,熟記關于原點對稱的點的橫坐標與縱坐標都互為相反數(shù)是解題的關鍵.12、2【分析】連接BF,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=BF,再根據(jù)等邊對等角的性質(zhì)求出∠ABF=∠A,然后根據(jù)三角形的內(nèi)角和定理求出∠CBF,再根據(jù)三角函數(shù)的定義即可求出CF.【詳解】如圖,連接BF,

∵EF是AB的垂直平分線,

∴AF=BF,

∴,,在△BCF中,∴,∴.故答案為:.【點睛】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角函數(shù)的定義,熟記性質(zhì)并作出輔助線是解題的關鍵.13、2.1【分析】由條件可證出DE=EC,證明△AED∽△ACB,利用對應邊成比例的知識,可求出DE長.【詳解】∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC,設DE=x,則AE=1﹣x,∵DE∥BC,∴△AED∽△ACB,∴,即,∴x=2.1.故答案為:2.1.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵根據(jù)相似三角形找到對應線段成比例.14、24或.【解析】試題分析:由x2-16x+60=0,可解得x的值為6或10,然后分別從x=6時,是等腰三角形;與x=10時,是直角三角形去分析求解即可求得答案.考點:一元二次方程的解法;等腰三角形的性質(zhì);直角三角形的性質(zhì).勾股定理.15、x1=-12,x2=1【分析】把后面一個方程中的x+3看作一個整體,相當于前面方程中的x來求解.【詳解】解:∵關于x的方程的解是,(a,m,b均為常數(shù),a≠0),∴方程變形為,即此方程中x+3=-9或x+3=11,解得x1=-12,x2=1,故方程的解為x1=-12,x2=1.故答案為x1=-12,x2=1.【點睛】此題主要考查了方程解的含義.注意觀察兩個方程的特點,運用整體思想進行簡便計算.16、2【解析】如圖所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA=,則AC=AB=×6=2,故答案為2.17、①③④【分析】根據(jù)矩形的性質(zhì)和余角的性質(zhì)可判斷①;延長CB,F(xiàn)E交于點G,根據(jù)ASA可證明△AEF≌△BEG,可得AF=BG,EF=EG,進一步即可求得AF、BC與CF的關系,S△CEF與S△EAF+S△CBE的關系,進而可判斷②與③;由,結(jié)合已知和銳角三角函數(shù)的知識可得,進一步即可根據(jù)AAS證明結(jié)論④;問題即得解決.【詳解】解:∵,,∵四邊形ABCD是矩形,∴∠B=90°,∴,,所以①正確;延長CB,F(xiàn)E交于點G,如圖,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②錯誤;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正確;若,則,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正確.綜上所述,正確的結(jié)論是①③④.故答案為:①③④.【點睛】本題考查了矩形的性質(zhì)、余角的性質(zhì)、全等三角形的判定和性質(zhì)以及銳角三角函數(shù)等知識,綜合性較強,屬于??碱}型,正確添加輔助線、熟練掌握上述基本知識是解題的關鍵.18、【分析】根據(jù)A、B坐標求出直線AB的解析式后,求得AB中點M的坐標,連接PM,在等邊△PAB中,M為AB中點,所以PM⊥AB,,再求出直線PM的解析式,求出點P坐標;在Rt△PAM中,AP=AB=5,,即且a>0,解得a>0,即,將a代入直線PM的解析式中求出b的值,最后計算2(a-b)的值即可;【詳解】解:∵A(4,0),B(0,3),∴AB=5,設,∴,∴,∴,∵A(4,0)B(0,3),∴AB中點,連接PM,在等邊△PAB中,M為AB中點,∴PM⊥AB,,∴,∴設直線PM的解析式為,∴,∴,∴,∴,在Rt△PAM中,AP=AB=5,∴,∴,∴,∴,∵a>0,∴,∴,∴;【點睛】本題主要考查了一次函數(shù)的綜合應用,掌握一次函數(shù)是解題的關鍵.三、解答題(共66分)19、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當∠ABD=∠DBC=β時,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當∠ABD=∠DBC=β時,則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點A作AH⊥BC于點H,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當∠ABD=∠C=β時,過點A作AH⊥BE交BE于點H,交BD于點G,則點G是圓的圓心(BE的中垂線與直徑的交點),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,則cos∠ABD=cosβ===cosC,則tanC=;綜上,tan∠C的值為或.【點睛】本題主要考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)值等知識.屬于圓的綜合題,解決本題需要我們熟練各部分的內(nèi)容,對學生的綜合能力要求較高,一定要注意將所學知識貫穿起來.20、(1)4,8;(1)證明見詳解;(3)CE=0或1或或;【分析】(1)根據(jù)點P是AB的中點可判斷出PD、PE是△ABC的中位線,繼而可得出PD、PE的長度,也可得出四邊形DCEP的周長和面積.(1)先根據(jù)圖形可猜測PD=PE,從而連接CP,通過證明△PCD≌△PEB,可得出結(jié)論.(3)題目只要求是等腰三角形,所以需要分四種情況進行討論,這樣每一種情況下的CE的長也就不難得出.【詳解】解:(1)根據(jù)△ABC中,AC=BC=4,∠C=90°,∵PD⊥AC,PE⊥BC,∴PD∥BC,PE∥AC,又∵點P是AB中點,∴PD、PE是△ABC的中位線,∴PD=CE=1,PE=CD=1,∴四邊形DCEP是正方形,面積為:1×1=4,周長為:1+1+1+1=8;故答案為:4,8(1)PD=PE;證明如下:AC=BC,∠C=90°,P為AB中點,連接CP,∴CP平分∠C,CP⊥AB,∵∠PCB=∠B=45°,∴CP=PB,∵∠DPC+∠CPE=∠CPE+∠EPB=90°,∴∠DPC=∠EPB,在△PCD和△PEB中,,∴△PCD≌△PBE(ASA),∴PD=PE.(3)△PBE是等腰三角形,∵AC=BC=4,∠ACB=90°,∴,∴PB=;①PE=PB時,此時點C與點E重合,CE=0;②當PB=BE時,如圖,E在線段BC上,CE=;③當PB=BE時,如圖,E在CB的延長線上,CE=;④當PE=BE時,此時,點E是BC中點,則CE=1.綜合上述,CE的長為:0或1或或;【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)與判定,第三問的解答應分情況進行論證,不能漏解,有一定難度.21、【分析】把點A代入直線解析式求出點A的坐標,然后再代入反比例函數(shù)解析式求出k值即可.【詳解】解:∵直線與反比例函數(shù)的圖象的一個交點為∴2=-a+4,即a=2∴點A坐標為(2,2)∴,即k=4.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,即點A即在直線上又在雙曲線上,代入求值即可.22、證明見解析【分析】利用等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì),即可判定△EAN≌△DAM(SAS),依據(jù)全等三角形的對應邊相等,即可得到EN=DM.【詳解】證明:∵△ABE是等邊三角形,∴∠BAE=60°,BA=EA,由旋轉(zhuǎn)可得,∠MAN=60°,AM=AN,∴∠BAE=∠MAN,∴∠EAN=∠BAM,∵四邊形ABCD是正方形,∴BA=DA,∠BAM=∠DAM=45°,∴EA=DA,∠EAN=∠DAM,在△EAN和△DAM中,EA=DA.∠EAN=∠DAM,AN=AM,∴△EAN≌△DAM(SAS),∴EN=DM.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解決本題的關鍵是要熟練掌握旋轉(zhuǎn)圖形的性質(zhì)和全等三角形的判定和性質(zhì).23、(1)證明見解析;(2)6π.【分析】(1)連接,交于,由可知,,又,四邊形為平行四邊形,則,由圓周角定理可知,由內(nèi)角和定理可求,即可得證結(jié)論.(2)證明,將陰影部分面積問題轉(zhuǎn)化為求扇形的面積求解.【詳解】連接交于點,如圖:∵∴∴在中,∴∵∴∴是的切線(2)由(1)可知,在和中,∴∴∴【點睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論