現(xiàn)代水處理技術(shù)進(jìn)展_第1頁
現(xiàn)代水處理技術(shù)進(jìn)展_第2頁
現(xiàn)代水處理技術(shù)進(jìn)展_第3頁
現(xiàn)代水處理技術(shù)進(jìn)展_第4頁
現(xiàn)代水處理技術(shù)進(jìn)展_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

現(xiàn)代水處理技術(shù)進(jìn)展治理水污染已經(jīng)成為當(dāng)前全球水資源可持續(xù)利用和國民經(jīng)濟(jì)可持續(xù)發(fā)展的重要戰(zhàn)略目標(biāo)。為了合理地開發(fā)和利用水資源,降低水污染對環(huán)境的破壞和對人類生活的危害,必須對工業(yè)廢水和生活用水進(jìn)行科學(xué)的處理,尤其是排放水中含有的有機(jī)營養(yǎng)素(如氮磷等)對公共健康和環(huán)境破壞具有重大的影響。許多傳統(tǒng)的方法隨著對水質(zhì)的要求不短提高,已經(jīng)不能滿足國際檢測水質(zhì)標(biāo)準(zhǔn)了,這就面臨著開發(fā)新的先進(jìn)水處理技術(shù)來適應(yīng)新的挑戰(zhàn)。1大型火電廠化學(xué)水處理技術(shù)進(jìn)展1總體發(fā)展特點(diǎn)電廠化學(xué)水處理在為高參數(shù)、大容量的現(xiàn)代化火電廠的生產(chǎn)服務(wù)過程中,呈現(xiàn)出以下主要發(fā)展趨勢與特點(diǎn):1.1水處理設(shè)備呈集中化布置的特點(diǎn)傳統(tǒng)的電廠化學(xué)水處理一般按功能作用設(shè)有:凈水預(yù)處理、鍋爐補(bǔ)給水處理、凝結(jié)水精處理、汽水取樣監(jiān)測分析、加藥系統(tǒng)、綜合水泵房、循環(huán)水加氯、廢水及污水處理等系統(tǒng)。存在占地面積大,生產(chǎn)崗位分散,管理不便等問題。目前,從優(yōu)化水處理整體流程的需要出發(fā),設(shè)備布置以緊湊、立體、集中的構(gòu)型取代平面、松散、點(diǎn)狀的構(gòu)型。節(jié)約了占地面積和廠房空間,提高了設(shè)備的綜合利用率,方便了運(yùn)行管理。1.2水處理生產(chǎn)呈集中化控制的特點(diǎn)集中化控制就是把電廠所有化學(xué)水處理的各個子系統(tǒng)合為一套控制系統(tǒng),取消傳統(tǒng)的模擬盤,采用PCL和上位機(jī)的2級控制結(jié)構(gòu),利用PLC對各個系統(tǒng)中的設(shè)備分別進(jìn)行數(shù)據(jù)采集和控制,上位機(jī)和PCL之間通過數(shù)據(jù)通信接口進(jìn)行通信。各個子系統(tǒng)以局域網(wǎng)的總線形式集中聯(lián)接在化學(xué)主控制室上位機(jī)上,從而實(shí)現(xiàn)化學(xué)水處理系統(tǒng)相對集中的監(jiān)視、操作與自動控制。1.3水處理方式以環(huán)保和節(jié)能為導(dǎo)向的特點(diǎn)隨著環(huán)境保護(hù)意識的提高,盡可能減少水處理過程中產(chǎn)生的各類污染,不用或少用化學(xué)藥品已成為必然的選擇?!熬G色水處理”的概念也逐漸深入人心。如鍋爐水處理正朝著“少排污、零排污”,“少清洗、零清洗”的方面發(fā)展。隨著水資源可持續(xù)發(fā)展戰(zhàn)略的深化,作為耗水大戶,合理地利用水資源,提高水的重復(fù)利用率已成為電廠水處理工作的緊迫任務(wù)。依靠科技進(jìn)步與管理制度,實(shí)現(xiàn)水的循環(huán)使用、循序使用(串級使用)和水的回收使用尤為重要。廢水的'零排放”已在部分電廠得到實(shí)現(xiàn),即只能從水體取水而不向水體或周圍環(huán)境排放任何廢水。1.4水處理工藝呈現(xiàn)多元化的特點(diǎn)傳統(tǒng)的電廠水處理工藝中,主要以混凝過濾、離子交換、磷酸酸處理為主要特征。如今,電廠水處理技術(shù)出現(xiàn)了多元化的特點(diǎn)。隨著化工材料技術(shù)的不斷進(jìn)步,膜處理技術(shù)(包括微濾、超濾、反滲透、納濾等)開始廣泛應(yīng)用于水質(zhì)處理中,離子交換樹脂的種類、使用條件與范圍也有較大的進(jìn)展,粉末樹脂在凝結(jié)水處理中發(fā)揮著積極的作用。1.5檢測方法方式日趨科學(xué)化的特點(diǎn)化學(xué)檢測與診斷技術(shù)進(jìn)一步得到發(fā)展與應(yīng)用,檢測與診斷的方法方式日趨科學(xué)化。在觀念上,化學(xué)診斷實(shí)現(xiàn)了從事后分析到事前防范的轉(zhuǎn)變;在手段上,逐步實(shí)現(xiàn)從手工分析到在線診斷的轉(zhuǎn)變;在級別上,也開始實(shí)現(xiàn)從微量分析到痕量分析的轉(zhuǎn)變。所有的這些轉(zhuǎn)變,為預(yù)防事故的發(fā)生,保證機(jī)組的安全穩(wěn)定運(yùn)行提供了有力的保障。2電廠化學(xué)水處理技術(shù)的進(jìn)展與應(yīng)用2.1水處理工藝技術(shù)2.1.1鍋爐補(bǔ)給水處理傳統(tǒng)的鍋爐補(bǔ)給水預(yù)處理通常采用混凝與過濾處理。國內(nèi)大型火電廠澄清處理設(shè)備多為機(jī)械加速攪拌澄清池,其優(yōu)點(diǎn)是:反應(yīng)速度快、操作控制方便、出力大。近年來,變頻技術(shù)不斷地應(yīng)用到混凝處理中去,進(jìn)一步提高了預(yù)處理出水水質(zhì),減少了人工操作。在濾池的發(fā)展方面,以粒狀材料為濾料的過濾技術(shù)經(jīng)歷了慢濾池、快濾池、多層濾料濾池等發(fā)展階段,在改善預(yù)處理水質(zhì)方面發(fā)揮了一定的作用。但由于粒狀材料的局限性,使過濾設(shè)備的出水水質(zhì)、截污能力和過濾速度均受到較大的限制。目前,以纖維材料代替粒狀材料作為濾元的新型過濾設(shè)備不斷地出現(xiàn),纖維過濾材料因尺寸小、表面積大及其材質(zhì)柔軟的特性,具有很強(qiáng)的界面吸附、截污及水流調(diào)節(jié)能力。代表性的產(chǎn)品有纖維球過濾器、膠囊擠壓式纖維過濾器、壓力板式纖維過濾器等。在鍋爐補(bǔ)給水預(yù)脫鹽處理技術(shù)方面,反滲透技術(shù)(簡稱RO)的發(fā)展已成為一個亮點(diǎn),電力行業(yè)最早使用反滲透技術(shù)的是天津軍糧城電廠,隨后在鄭州熱電、彰化電廠、招遠(yuǎn)電廠、彭城電廠、寶鋼電廠、石洞口電廠等得到了應(yīng)用。反滲透最大的特點(diǎn)是不受原水水質(zhì)變化的影響。如上海地區(qū)的濱海電廠,枯水期時(shí)適逢海水倒灌,長江水的氯根有時(shí)高達(dá)3500mg/L,黃浦江水的含鹽量也會劇增到2000mg/L,單純采用離子交換的除鹽設(shè)備已無法適應(yīng)這樣的惡劣水質(zhì)。另外,反滲透具有很強(qiáng)的除有機(jī)物和除硅能力,COD的脫除率可達(dá)83%,滿足了大機(jī)組對有機(jī)物和硅含量要求嚴(yán)格的需要。最后,反滲透由于除去了水中的大部分離子(一般為90%左右),減輕了下一道工序中離子交換系統(tǒng)的除鹽負(fù)擔(dān),從而減少酸、堿廢液排放量,降低了排放廢水的含鹽量,提高了電廠經(jīng)濟(jì)效益和環(huán)境效益。在鍋爐補(bǔ)給水除鹽處理方面,混床仍發(fā)揮著不可替代的作用,而混床本身的發(fā)展主要體現(xiàn)在兩個方面:環(huán)保與節(jié)能。填充床電滲析器(電除鹽)CDI(EDI)是將電滲析和離子交換除鹽技術(shù)組合在一起的精脫鹽工藝,樹脂的再生是由通過H2O電離的H+和OH-完成,即在直流電場中電離出來的H+和OH-直接充當(dāng)樹脂的再生劑,不需再消耗酸、堿藥劑。同時(shí),該裝置對弱電離子,如SO2、CO2的去除能力也較強(qiáng)。CDI在水處理工藝中在國外的應(yīng)用較多。1991年,美國的GrandGulf核電站安裝了首臺電除鹽設(shè)備。美國德州熱電廠補(bǔ)給水系統(tǒng)采用RO+EDI處理系統(tǒng),生水經(jīng)RO處理后的電導(dǎo)率為5~20pS/cm,再經(jīng)EDI處理后電導(dǎo)率小于0.卻S/cm。纖維過濾器、反滲透、電除鹽與離子交換技術(shù)的組合應(yīng)用將是今后鍋爐補(bǔ)給水處理發(fā)展的新趨勢。2.1.2鍋爐給水處理鍋爐給水目前用氨和聯(lián)氨的揮發(fā)性處理較成熟,但它比較適于新建的機(jī)組,待水質(zhì)穩(wěn)定后可轉(zhuǎn)為中性處理和聯(lián)合處理。加氧處理改變了傳統(tǒng)的除氧器、除氧劑處理,創(chuàng)造氧化還原氣氛,在低溫狀態(tài)下即可生成保護(hù)膜,抑制腐蝕。此法還可以降低給水系統(tǒng)的腐蝕產(chǎn)量,減少藥品用量、延長化學(xué)清洗間隔、降低運(yùn)行成本。氧化性水化學(xué)運(yùn)行方式在歐洲的應(yīng)用較為普及,國內(nèi)基本處于研試階段。必須強(qiáng)調(diào)的是,氧化性水化學(xué)運(yùn)行方式僅適用于高純度的給水,并應(yīng)注意系統(tǒng)材質(zhì)與之的相容性。2.1.3鍋爐爐水處理爐內(nèi)磷酸鹽處理技術(shù)已有70余年的歷史,現(xiàn)在全世界范圍內(nèi)有65%的汽包鍋爐使用過爐水磷酸鹽處理。由于以前的鍋爐參數(shù)較低,水處理工藝落后,爐水中常常出現(xiàn)大量的鈣鎂離子,為防止鍋爐結(jié)垢,不得不向鍋爐中加入大量的磷酸鹽以去除爐水中的硬度,這樣,爐水的pH值就非常高,堿性腐蝕問題顯得特別的突出。在這樣的情況下,協(xié)調(diào)磷酸鹽處理應(yīng)運(yùn)而生,并取得了一定的防腐效果。但隨著鍋爐參數(shù)不斷的提高,磷酸鹽的隱蔽”現(xiàn)象越來越嚴(yán)重,由此引起的酸性腐蝕也越來越多。而在另一方面,高參數(shù)機(jī)組的鍋爐補(bǔ)給水系統(tǒng)已全部采用二級除鹽,凝結(jié)水系統(tǒng)設(shè)有精處理裝置。這樣,爐水中基本沒有硬度成份,磷酸鹽處理的主要作用也從除硬度轉(zhuǎn)為調(diào)整pH值防腐。因此,近十年來,人們又提出低磷酸鹽處理與平衡磷酸鹽處理。低磷酸鹽處理的下限控制在0.3~0.5mg/L,上限一般不超過2~3mg/L。平衡磷酸鹽處理的基本原理是使?fàn)t水磷酸鹽的含量減少到只夠與硬度成份反應(yīng)所需的最低濃度,同時(shí)允許爐水中有小于1mg/L的游離NaOH,以保證爐水的pH值在9.0~9.6的范圍內(nèi)。加拿大OntarioHydro電站壓力為13.8~17.9MPa鍋爐進(jìn)行平衡磷酸鹽處理的爐水控制指標(biāo):磷酸根為0.0~2.4mg/L,pH值9.0~9.6,游離NaOH小于1mg/L。山西陽光發(fā)電公司爐水磷酸根濃度范圍0.1~1.0mg/L,期望值為0.2~0.5mg/L。湘潭電廠爐水磷酸根濃度范圍0.1~0.5mg/L,pH值9.0~9.7,當(dāng)爐水pH值小于9.2,則添加微量的NaOH。2.1.4凝結(jié)水處理目前絕大部分300MW及以上的高參數(shù)機(jī)組均設(shè)有凝結(jié)水精處理裝置,并以進(jìn)口為主,其再生系統(tǒng)的主流產(chǎn)品是高塔分離裝置與錐底分離裝置。但真正能實(shí)現(xiàn)長周期氨化運(yùn)行的精處理裝置并不多,僅有廈門嵩嶼電廠等少數(shù)幾家,嵩嶼電廠混床的運(yùn)行周期在100天以上,周期制水量達(dá)50萬噸以上。從環(huán)保與經(jīng)濟(jì)的角度出發(fā),實(shí)現(xiàn)氨化運(yùn)行將是今后精處理系統(tǒng)的發(fā)展方向。另外,在設(shè)備投資、設(shè)備布置與工藝優(yōu)化方面,應(yīng)考慮盡可能多地利用電廠原有的公用系統(tǒng),如減少樹脂再生用的風(fēng)機(jī)及混床的再循環(huán)泵等,盡可能把系統(tǒng)的程控裝置和再生裝置安裝在鍋爐補(bǔ)給水側(cè),以利實(shí)現(xiàn)集中化管理。另一方面,具有過濾與除鹽雙重功能的粉未樹脂(POWDEX)精處理系統(tǒng)也逐步得到應(yīng)用,如福州華能二期、南通華能二期等電廠。但由于粉未樹脂的價(jià)格較高,主要依賴于進(jìn)口,使得粉未樹脂精處理裝置的推廣應(yīng)用受到了一定的限制。2.1.5定冷水處理國外的雙水內(nèi)冷機(jī)組由于水箱采用充氮密閉,并設(shè)有鈀樹脂催化器進(jìn)行除氧,所以多采用中性除氧法。而國產(chǎn)雙水內(nèi)冷機(jī)組大多采用敞口式水箱。水處理技術(shù)工藝主要有:采用除鹽水與凝結(jié)水混合補(bǔ)水的方式或添加少量的堿液來改善pH值,加裝混合離子交換器對定冷水進(jìn)行處理,還有投加MBT或BTA緩蝕劑來減緩銅腐蝕。從實(shí)踐的效果看,堿性化學(xué)水工況運(yùn)行較為成功,但存在著堿度不易控制與調(diào)整的問題等。最近,山東省的濰坊、威海、十里泉等電廠采用化學(xué)清洗與預(yù)膜工藝處理定冷水,取得了較好的防腐防垢效果。應(yīng)該強(qiáng)調(diào)的是,不管是預(yù)膜工藝還是直接投加MBT或BTA緩蝕劑及其復(fù)合配方,應(yīng)充分考慮到系統(tǒng)的潔凈程度。2.1.6循環(huán)水處埋采用閉式循環(huán)冷卻的火電廠,冷卻水的循環(huán)回用和水質(zhì)穩(wěn)定技術(shù)的開發(fā)是水處理工作的重點(diǎn)。發(fā)達(dá)國家循環(huán)水濃縮倍率已達(dá)6~8倍,國內(nèi)大多數(shù)電廠的循環(huán)水濃縮倍率在2~3倍左右,國內(nèi)火電廠應(yīng)在提高循環(huán)水重復(fù)利用效率上下功夫。為避免磷系水處理藥劑對環(huán)境水體的二次污染,低磷和非磷系配方的高效阻垢分散劑、多元共聚物水處理藥劑逐漸得到應(yīng)用。采用開式排放冷卻的火電廠,特別是以海水作為冷卻水的濱海電廠,冷卻水一般采用加氯處理,其常見的裝置是美國CaptialControl公司的產(chǎn)品。但是,也有部分電廠采用電解海水產(chǎn)生次氯酸鈉作為殺生劑。如漳州后石電廠、北侖港電廠等。2.1.7廢水處理目前,國內(nèi)大型的電廠工業(yè)廢水處理的布置基本套用寶鋼電廠的廢水處理模式,即采用廢水集中匯集,分步處理的方式。一般采用以鼓風(fēng)曝氣氧化、pH調(diào)整、混凝澄清、污泥濃縮處理等為主的工藝。但這種處理方式的缺點(diǎn)是對水質(zhì)復(fù)雜且變化范圍大的來水的處理難度較大,并影響到廢水的綜合回收利用。近年來,兩相流固液分離技術(shù)逐步得到應(yīng)用,該技術(shù)采用一次加藥混凝、在一個組合設(shè)施內(nèi)完成絮凝、沉淀、澄清、浮渣刮除和污泥濃縮等工藝過程,使水中的泥沙、懸浮固體物、藻類懸浮物和油在同一設(shè)施內(nèi)分離出來。該處理技術(shù)提高了出水水質(zhì),降低了處理成本,擴(kuò)大了回用范圍。2.2水處理監(jiān)控技術(shù)2.2.1控制技術(shù)水處理控制技術(shù)的發(fā)展以PLC控制為主導(dǎo),并可以分為三個層面。第一個層面是水處理各個單獨(dú)的子系統(tǒng)實(shí)現(xiàn)PLC+PC控制方式,取消了繼電器或模擬屏控制,直接在CRT上進(jìn)行操作與監(jiān)控。這一硬件體系在除鹽系統(tǒng)與凝結(jié)水精處理系統(tǒng)中應(yīng)用最為廣泛。目前常用的PLC中有MODICON、AB、SIEMENS、GE、OMRON等產(chǎn)品,工控機(jī)有研華、ICS等名牌,監(jiān)控軟件有INTOUCH、FIX、WINVIEW等流行軟件。程控系統(tǒng)具有穩(wěn)定性強(qiáng)、人機(jī)接口好和自動化水平高等特點(diǎn),可實(shí)現(xiàn)對出水質(zhì)量的自動監(jiān)測、藥量的自動調(diào)節(jié)、閥門和各類泵與風(fēng)機(jī)的自動操作。第二個層面是采用集中化控制,把化學(xué)水處理控制系統(tǒng)作為一個獨(dú)立的控制區(qū),實(shí)現(xiàn)對化學(xué)水處理相對分散的各個子系統(tǒng)間的有效控制與緊密聯(lián)接,解決水處理設(shè)備位置分散、運(yùn)行值班崗位多、巡檢工作量大的問題。如蕪湖發(fā)電廠化學(xué)水處理系統(tǒng)采用上海新華控制工程公司的XDPS-400DCS控制系統(tǒng),實(shí)現(xiàn)了對原先位置較為分散、自動化程度低的水處理系統(tǒng)的集中控制與監(jiān)測。第三個層面是通過網(wǎng)關(guān)技術(shù)或?qū)S玫囊蕴W(wǎng)卡與電廠的其他網(wǎng)絡(luò)進(jìn)行聯(lián)網(wǎng),實(shí)現(xiàn)水處理生產(chǎn)數(shù)據(jù)的共享與交換。根據(jù)外高橋、北侖港、嵩嶼、嘉興,石洞口二廠等電廠完成的化學(xué)水系統(tǒng)局部程控和相對集中化控制的效果看,化學(xué)水運(yùn)行工作量大為降低。如外高橋電廠4臺300MW機(jī)組,目前化學(xué)水處理運(yùn)行僅20余人,較大幅度地減人增效,提高了生產(chǎn)效率與經(jīng)濟(jì)效益,增強(qiáng)了電廠的競爭力。2.2.2監(jiān)測技術(shù)高參數(shù)機(jī)組及部分高壓機(jī)組對水汽進(jìn)行集中采取與在線分析,在線表計(jì)與微機(jī)相聯(lián),微機(jī)定期巡測管理監(jiān)測數(shù)據(jù),并根據(jù)監(jiān)測結(jié)果進(jìn)行水汽過程的自動調(diào)節(jié),實(shí)現(xiàn)監(jiān)測數(shù)據(jù)實(shí)時(shí)顯示、自動存案、越限報(bào)警、自動生成統(tǒng)計(jì)和管理報(bào)表等化學(xué)監(jiān)測功能,也可實(shí)現(xiàn)水處理工況的自動調(diào)節(jié)、在線事故分析與推斷等化學(xué)人工智能控制和診斷功能,為水質(zhì)運(yùn)行工況的調(diào)整和歷史趨勢分析以及生產(chǎn)過程中事件和故障的追蹤分析提供了科學(xué)的依據(jù),避免了報(bào)表數(shù)據(jù)、事件處理受人為因素的影響。增強(qiáng)了監(jiān)測數(shù)據(jù)的可靠性和水工況調(diào)節(jié)的有效性,也減輕了工作人員的勞動強(qiáng)度。另外,適用于痕量級分析的在線離子色譜(IC)開始出現(xiàn),性能優(yōu)良的硅表(如Polymetron8891)、鈉表(如ORION1811EL)、氧表(如HoneyWell7020)、酸度計(jì)(如GLIE33)等在線表計(jì)廣泛地應(yīng)用到連續(xù)的水質(zhì)監(jiān)測中去,保證了分析數(shù)據(jù)的可靠性與準(zhǔn)確性。1納米光催化氧化水處理技術(shù)1.1機(jī)理一般認(rèn)為,光催化活性是由催化劑的吸收光能力、電荷分離和向底物轉(zhuǎn)移的效率決定的。當(dāng)納米半導(dǎo)體粒子受到大于禁帶寬度能量的光子照射后,電子從價(jià)帶躍遷到導(dǎo)帶而產(chǎn)生了電子一空穴對。電子具有還原性,空穴具有氧化性,從而促進(jìn)了有機(jī)物的合成或使有機(jī)物降解。納米半導(dǎo)體材料的特性和催化效果各有不同,但作為光催化劑它們的催化活性與相應(yīng)的體相材料相比有顯著提高,其原理在于:①通過量子尺寸限域造成吸收邊的藍(lán)移;②由散射的能級和躍遷選律造成光譜吸收和發(fā)射行為結(jié)構(gòu)比;③與體相材料相比,量子阱中的熱載流子冷卻速度下降,量子效率提高;④納米半導(dǎo)體粒子所具有的量子尺寸效應(yīng)使其導(dǎo)帶和價(jià)帶能級變成分立的能級,能隙變寬,導(dǎo)帶電位變得更負(fù),而價(jià)帶電位變得更正,這意味著納米半導(dǎo)體粒子獲得了更強(qiáng)的還原及氧化能力,從而催化活性隨尺寸量子化程度的提高而提高[5]。除此以外,還在于納米半導(dǎo)體粒子的粒徑和吸收特性。納米半導(dǎo)體粒子的粒徑通常小于空間電荷層的厚度。在此情況下,空間電荷層的任何影響都可忽略,光生載流子可通過簡單的擴(kuò)散從粒子內(nèi)部遷移到粒子表面而與電子供體或受體發(fā)生還原或氧化反應(yīng)。粒徑越小則電子與空穴復(fù)合幾率越小,電荷分離效果越好,從而導(dǎo)致催化活性的提高。在光催化反應(yīng)中,反應(yīng)物吸附在催化劑的表面是光催化反應(yīng)的一個前置步驟,催化反應(yīng)的速率與該物質(zhì)在催化劑上的吸附量有關(guān)。納米半導(dǎo)體粒子強(qiáng)的吸附效應(yīng)甚至允許光生載流子優(yōu)先與吸附的物質(zhì)進(jìn)行反應(yīng)而不管溶液中其他物質(zhì)的氧化還原電位順序[6]。在催化反應(yīng)過程中,納米材料的表面特性和缺陷數(shù)量具有同樣重要的作用[7]。納米催化劑的催化效果還與其材料類型有關(guān)。研究發(fā)現(xiàn),禁帶寬度大的金屬氧化物因具有抗光腐蝕性而更具有實(shí)用價(jià)值。CdS的禁帶寬度較窄,對可見光敏感,在起催化作用的同時(shí)晶格硫以硫化物和SO32-形式進(jìn)入溶液中。ZnO比TiO2的催化活性高,但自身會發(fā)生光腐蝕°a-Fe2O3能吸收可見光(激發(fā)波長為560nm),但是催化活性低[8]。與其他n型半導(dǎo)體納米材料相比,TiO2具有化學(xué)穩(wěn)定性好、反應(yīng)活性大等特點(diǎn),是一種優(yōu)異的光電功能材料,并以其優(yōu)越的催化性能被廣泛應(yīng)用于污染物的降解,取得了令人鼓舞的進(jìn)展。用納米TiO2作催化劑氧化水中污染物的試驗(yàn)是目前研究工作的熱點(diǎn)(主要圍繞不同類型污染物的降解效果這一主題,同時(shí)進(jìn)行水處理體系中TiO2的存在形式、反應(yīng)器類型等應(yīng)用技術(shù)的研究)。研究結(jié)果顯示,納米TiO2光催化氧化技術(shù)有良好的應(yīng)用前景。1.2研究現(xiàn)狀綜合現(xiàn)有文獻(xiàn)資料不難發(fā)現(xiàn),納米TiO2光催化氧化法對水中污染物的去除具有廣泛的適用性,其對水中鹵代脂肪烴、染料、硝基芳烴、多環(huán)芳烴、雜環(huán)化合物、烴類、酚類、表面活性劑、農(nóng)藥等都能有效地進(jìn)行降解。用TiO2作光催化劑,在光照下可使60種含氯有機(jī)化合物發(fā)生氧化還原反應(yīng)而生成CO2、H2O及其他無毒的無機(jī)物。光催化氧化研究的對象除含小分子有機(jī)物以外,還包括大分子聚合物,如聚丙烯酰胺(PAM)。研究結(jié)果表明,PAM的降解效率與TiO2類型、用量及PAM濃度等因素有關(guān)[9]。在水處理過程中,納米TiO2光催化氧化活性隨TiO2粒徑減小而增高。有研究證實(shí),納米TiO2光催化降解苯酚活性的陡變發(fā)生在粒徑<30nm的范圍,當(dāng)晶粒尺寸從30nm減小到10nm時(shí)TiO2光催化降解苯酚的活性提高了近45%[10]。在光催化氧化反應(yīng)體系中,由于納米TiO2顆粒微小而極易流失,且懸浮態(tài)納米TiO2顆粒與廢水的分離過程既緩慢又昂貴,加之懸浮粒子對光線的吸收阻擋影響了光的輻射深度,因此近年來固定相納米催化劑及其催化氧化效能的研究成為主流,進(jìn)行TiO2納米膜或負(fù)載技術(shù)的催化氧化試驗(yàn)也比較普遍。在固定相納米TiO2光催化氧化過程中,TiO2的表面形態(tài)和表面態(tài)能級結(jié)構(gòu)是決定其光催化活性的重要因素。納米TiO2薄膜對CHCl3的光降解有很好的催化活性,且光催化分解率與TiO2薄膜的孔徑和厚度有關(guān)[11]。對納米TiO2光催化降解苯酚的動力學(xué)研究表明,在直接使用高壓汞燈無Pyrex玻璃濾光的條件下,TiO2光催化降解苯酚反應(yīng)的速率明顯提高,但有關(guān)的動力學(xué)問題尚不能用現(xiàn)行理論來解釋[12]。為了便于從機(jī)理上探討納米催化劑的催化氧化過程,有研究者對光催化體系中羥自由基的產(chǎn)生過程和測定方法進(jìn)行了試驗(yàn)研究,結(jié)果表明在一定試驗(yàn)條件下,水楊酸是羥自由基一個較好的探針性物質(zhì)[13],這為探討納米催化劑的催化氧化機(jī)理研究提供了有效途徑。2納米光催化氧化應(yīng)用技術(shù)為提高納米光催化氧化水處理技術(shù)的效果和實(shí)用水平,研究者們正致力于納米催化材料的改性、納米催化劑的固定以及催化反應(yīng)器的改進(jìn)等研究,試圖在這些應(yīng)用技術(shù)環(huán)節(jié)上取得突破和創(chuàng)新。2.1納米催化材料的改性技術(shù)納米催化材料的氧化還原能力即光催化活性與導(dǎo)帶電子(e-)和價(jià)帶空穴(h+)的數(shù)量成正比。在納米催化材料(如TiO2)表面,e-和h+很容易復(fù)合,因此制備高活性納米光催化劑的關(guān)鍵就是如何減小二者的復(fù)合幾率。目前采取的辦法主要有貴金屬沉積、過渡金屬摻雜、復(fù)合半導(dǎo)體、表面光敏化、表面螯合及衍生作用等。通過上述處理后,納米催化劑的表面結(jié)構(gòu)和組成等特性明顯改善,而且還可能產(chǎn)生某種新的特性,從而使催化性能得到普遍提高[14]。2.2納米催化劑的存在形式懸浮態(tài)催化劑具有很大的比表面積,能充分吸收光子的能量,因此光降解效率很高,但以這種形式存在的催化劑無法連續(xù)使用,活性成分損失較大,且在水溶液中還易于凝聚,后期處理過程較繁瑣,因而阻礙了該項(xiàng)技術(shù)的實(shí)用化。繼懸浮態(tài)存在形式之后,催化劑固定技術(shù)與載體的選擇成為納米光催化氧化技術(shù)研究的一個重要方面。納米催化劑被固定后,光催化活性都有不同程度的降低,因此選擇合適的催化劑載體和負(fù)載方式是研究的重點(diǎn)。沿用以往常規(guī)催化劑固載技術(shù)的研究思路[14、15],納米催化劑的載體可選用多種材料,如玻璃、海砂、硅膠、陶瓷、不銹鋼材料、鎳網(wǎng)、活性炭、多孔介質(zhì)等。有研究表明,不透明的漂浮載體幾乎對光催化劑的活性無影響。2.3催化反應(yīng)器設(shè)計(jì)光催化氧化法降解水中不同類型污染物在試驗(yàn)研究階段獲得了許多成功的案例,但中試規(guī)模的處理至今尚未獲得成功。有研究者認(rèn)為,光催化反應(yīng)器的設(shè)計(jì)是這項(xiàng)技術(shù)實(shí)現(xiàn)工業(yè)化的關(guān)鍵。由此不難想象,在以納米材料作光催化劑的水處理工程中,光催化反應(yīng)器的設(shè)計(jì)同樣是關(guān)鍵的技術(shù)環(huán)節(jié)?;诔R?guī)光催化劑而設(shè)計(jì)的光催化反應(yīng)器種類很多[16],但若直接將它們用作納米催化劑的反應(yīng)器,其實(shí)用功效有待驗(yàn)證。當(dāng)前,已有研究者對此進(jìn)行了試驗(yàn)并取得了一些有針對性的研究成果。3活性炭水處理技術(shù)采用活性炭物理化學(xué)吸附、臭氧化學(xué)氧化、生物氧化降解及臭氧滅菌消毒四種技術(shù)合為一體的工藝。首先利用臭氧預(yù)氧化作用,初步氧化分解水中的有機(jī)物及其它還原性物質(zhì),降低生物活性炭濾池的有機(jī)負(fù)荷,同時(shí)臭氧氧化能使水中難以生物降解的有機(jī)物斷鏈、開環(huán),轉(zhuǎn)化成簡單的脂肪烴,改變其生化特性。臭氧除了自身能將某些有害有機(jī)物氧化變成無害物外,在客觀上還可以增加小分子的有機(jī)物,使活性炭的吸附功能得到更好的發(fā)揮?;钚蕴磕軌蜓杆俚匚剿械娜芙庑杂袡C(jī)物,同時(shí)也能富集微生物,使其表面能夠生長出良好的生物膜,靠本身的充氧作用,炭床中的微生物就能以有機(jī)物為養(yǎng)料大量生長繁殖好氣菌,致使活性炭吸附的小分子有機(jī)物充分生物降解。臭氧-生物活性炭工藝能夠有效地去除水中的有機(jī)物和氨氮,對水中的無機(jī)還原性物質(zhì)、色度、濁度也有很好的去除效果,并且能有效地降低出水致突變活性,保證了飲用水的安全。但該法對污染源水的指標(biāo)(如氨氮含量)及原處理工藝(如預(yù)氯化)部分有一定的要求[10]。臭氧-生物活性炭工藝是目前世界上公認(rèn)的去除飲用水中有機(jī)污染物最為有效的深度處理方法之一。該工藝是在活性炭吸附的基礎(chǔ)上發(fā)展起來的,綜合了臭氧、活性炭兩者的優(yōu)點(diǎn)。若單獨(dú)使用臭氧,成本高,且水中可生物同化有機(jī)碳AOC)增加,導(dǎo)致水的生物穩(wěn)定性變差;單獨(dú)使用活性炭,其吸附及微生物降解協(xié)同作用效果減弱,吸附的飽和周期縮短,為保持水質(zhì)目標(biāo),必須經(jīng)常再生[11]。臭氧-活性炭聯(lián)用工藝則有效地克服了以上兩者單獨(dú)采用的局限性,又充分發(fā)揮了兩者的優(yōu)點(diǎn),使水質(zhì)處理效果大為改善。此外,采用臭氧■活性炭聯(lián)用工藝還能有效地降低AOC(生物可同化有機(jī)碳)值,使出水的生物穩(wěn)定性大為提高,活性炭上附著的微生物使其能長期保持活性,有效延長活性炭的再生周期[12]。4納米光催化氧化水處理技術(shù)1納米光催化氧化水處理技術(shù)1.1機(jī)理一般認(rèn)為,光催化活性是由催化劑的吸收光能力、電荷分離和向底物轉(zhuǎn)移的效率決定的。當(dāng)納米半導(dǎo)體粒子受到大于禁帶寬度能量的光子照射后,電子從價(jià)帶躍遷到導(dǎo)帶而產(chǎn)生了電子一空穴對。電子具有還原性,空穴具有氧化性,從而促進(jìn)了有機(jī)物的合成或使有機(jī)物降解。納米半導(dǎo)體材料的特性和催化效果各有不同,但作為光催化劑它們的催化活性與相應(yīng)的體相材料相比有顯著提高,其原理在于:①通過量子尺寸限域造成吸收邊的藍(lán)移;②由散射的能級和躍遷選律造成光譜吸收和發(fā)射行為結(jié)構(gòu)比;③與體相材料相比,量子阱中的熱載流子冷卻速度下降,量子效率提高;④納米半導(dǎo)體粒子所具有的量子尺寸效應(yīng)使其導(dǎo)帶和價(jià)帶能級變成分立的能級,能隙變寬,導(dǎo)帶電位變得更負(fù),而價(jià)帶電位變得更正,這意味著納米半導(dǎo)體粒子獲得了更強(qiáng)的還原及氧化能力,從而催化活性隨尺寸量子化程度的提高而提高丘。除此以外,還在于納米半導(dǎo)體粒子的粒徑和吸收特性。納米半導(dǎo)體粒子的粒徑通常小于空間電荷層的厚度。在此情況下,空間電荷層的任何影響都可忽略,光生載流子可通過簡單的擴(kuò)散從粒子內(nèi)部遷移到粒子表面而與電子供體或受體發(fā)生還原或氧化反應(yīng)。粒徑越小則電子與空穴復(fù)合幾率越小,電荷分離效果越好,從而導(dǎo)致催化活性的提高。在光催化反應(yīng)中,反應(yīng)物吸附在催化劑的表面是光催化反應(yīng)的一個前置步驟,催化反應(yīng)的速率與該物質(zhì)在催化劑上的吸附量有關(guān)。納米半導(dǎo)體粒子強(qiáng)的吸附效應(yīng)甚至允許光生載流子優(yōu)先與吸附的物質(zhì)進(jìn)行反應(yīng)而不管溶液中其他物質(zhì)的氧化還原電位順序6"在催化反應(yīng)過程中,納米材料的表面特性和缺陷數(shù)量具有同樣重要的作用[口。納米催化劑的催化效果還與其材料類型有關(guān)。研究發(fā)現(xiàn),禁帶寬度大的金屬氧化物因具有抗光腐蝕性而更具有實(shí)用價(jià)值。CdS的禁帶寬度較窄,對可見光敏感,在起催化作用的同時(shí)晶格硫以硫化物和SO32-形式進(jìn)入溶液中°ZnO比TiO2的催化活性高,但自身會發(fā)生光腐蝕。a-Fe2O3能吸收可見光(激發(fā)波長為560nm),但是催化活性低⑻。與其他n型半導(dǎo)體納米材料相比,TiO2具有化學(xué)穩(wěn)定性好、反應(yīng)活性大等特點(diǎn),是一種優(yōu)異的光電功能材料,并以其優(yōu)越的催化性能被廣泛應(yīng)用于污染物的降解,取得了令人鼓舞的進(jìn)展。用納米TiO2作催化劑氧化水中污染物的試驗(yàn)是目前研究工作的熱點(diǎn)(主要圍繞不同類型污染物的降解效果這一主題,同時(shí)進(jìn)行水處理體系中TiO2的存在形式、反應(yīng)器類型等應(yīng)用技術(shù)的研究。研究結(jié)果顯示,納米TiO光催化氧化技術(shù)有良好的應(yīng)用前景。21.2研究現(xiàn)狀綜合現(xiàn)有文獻(xiàn)資料不難發(fā)現(xiàn),納米TiO2光催化氧化法對水中污染物的去除具有廣泛的適用性,其對水中鹵代脂肪烴、染料、硝基芳烴、多環(huán)芳烴、雜環(huán)化合物、烴類、酚類、表面活性劑、農(nóng)藥等都能有效地進(jìn)行降解。用TiO2作光催化劑,在光照下可使60種含氯有機(jī)化合物發(fā)生氧化還原反應(yīng)而生成CO2、h2O及其他無毒的無機(jī)物。光催化氧化研究的對象除含小分子有機(jī)物以外,還包括大分子聚合物,如聚丙烯酰胺(PAM)。研究結(jié)果表明,PAM的降解效率與TiO2類型、用量及PAM濃度等因素有關(guān)9。在水處理過程中,納米TiO2光催化氧化活性隨TiO2粒徑減小而增高。有研究證實(shí),納米TiO2光催化降解苯酚活性的陡變發(fā)生在粒徑<30nm的范圍,當(dāng)晶粒尺寸從30nm減小到10nm時(shí)TiO2光催化降解苯酚的活性提高了近45%[項(xiàng)。在光催化氧化反應(yīng)體系中,由于納米TiO2顆粒微小而極易流失,且懸浮態(tài)納米TiO2顆粒與廢水的分離過程既緩慢又昂貴,加之懸浮粒子對光線的吸收阻擋影響了光的輻射深度,因此近年來固定相納米催化劑及其催化氧化效能的研究成為主流,進(jìn)行TiO2納米膜或負(fù)載技術(shù)的催化氧化試驗(yàn)也比較普遍。在固定相納米

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論