第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件_第1頁(yè)
第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件_第2頁(yè)
第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件_第3頁(yè)
第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件_第4頁(yè)
第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件_第5頁(yè)
已閱讀5頁(yè),還剩115頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022/12/29第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式2022/12/29第一部分第一章§3第一課時(shí)等比數(shù)列的概念1第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件23.1等比數(shù)列3.1等比數(shù)列3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式4第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件5第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件6問(wèn)題1:這幾個(gè)數(shù)列,從相鄰項(xiàng)的關(guān)系上看,有什么共同特征?提示:從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比是同一個(gè)常數(shù).問(wèn)題1:這幾個(gè)數(shù)列,從相鄰項(xiàng)的關(guān)系上看,有7第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件8等比數(shù)列的定義及通項(xiàng)公式等比數(shù)列如果一個(gè)數(shù)列從

起,每一項(xiàng)與它的前一項(xiàng)的比都等于

,那么這個(gè)數(shù)列叫作等比數(shù)列,

叫作等比數(shù)列的公比,通常用字母q表示(q≠0)通項(xiàng)公式首項(xiàng)為a1,公比為q的等比數(shù)列的通項(xiàng)公式是

(a1≠0,q≠0)第2項(xiàng)同一個(gè)常數(shù)這個(gè)常數(shù)an=a1qn-1等比數(shù)列的定義及通項(xiàng)公式等比數(shù)列如果一個(gè)數(shù)列從9第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件10問(wèn)題1:若數(shù)列2,a,4,b,…為等比數(shù)列,a,b的值分別是什么?問(wèn)題2:在問(wèn)題1的條件下,a,4,b存在的關(guān)系是什么?提示:42=ab.問(wèn)題1:若數(shù)列2,a,4,b,…為等比數(shù)列,11等比中項(xiàng)等比中項(xiàng)12第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件13第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件14問(wèn)題:以上五個(gè)數(shù)列各有怎樣的增減性?提示:①遞減數(shù)列;②常數(shù)列;③遞增數(shù)列;④遞增數(shù)列;⑤遞減數(shù)列.問(wèn)題:以上五個(gè)數(shù)列各有怎樣的增減性?15a1a1>0q的范圍0<q<1q=1q>1{an}的增減性

常數(shù)列

遞減數(shù)列遞增數(shù)列a1a1>0q的范圍0<q<1q=1q>1{an}的增減性16a1a1<0q的范圍0<q<1q=1q>1{an}的增減性

常數(shù)列遞增數(shù)列遞減數(shù)列a1a1<0q的范圍0<q<1q=1q>1{an}的增減性171.對(duì)等比數(shù)列定義的理解應(yīng)注意以下幾點(diǎn):(1)等比數(shù)列每一項(xiàng)都可能作分母,故每一項(xiàng)均不能為0,因此q也不能為0.(2)必須是“從第2項(xiàng)起”,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù).(3)一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比是常數(shù),這個(gè)數(shù)列不一定是等比數(shù)列,定義中“同一個(gè)”常數(shù)非常重要,切不可丟掉.1.對(duì)等比數(shù)列定義的理解應(yīng)注意以下幾點(diǎn):18(4)非零常數(shù)列既是等差數(shù)列,又是等比數(shù)列.2.等比數(shù)列的增減性既與首項(xiàng)有關(guān),也與公比q有關(guān).3.在a,b同號(hào)時(shí),a與b才有等比中項(xiàng),而且有兩個(gè),它們互為相反數(shù);若a,b異號(hào)時(shí),a與b沒(méi)有等比中項(xiàng).(4)非零常數(shù)列既是等差數(shù)列,又是等比數(shù)列.19第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件20第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件21[思路點(diǎn)撥]將已知條件轉(zhuǎn)化為a1和q的方程或方程組,通過(guò)解方程或方程組求解a1,q,進(jìn)而解決其他問(wèn)題.[思路點(diǎn)撥]將已知條件轉(zhuǎn)化為a1和q的方22第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件23第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件24第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件25第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件26[一點(diǎn)通]1.求等比數(shù)列通項(xiàng)公式的方法(1)方程組法:用a1,q表示出已知兩項(xiàng)→聯(lián)立方程組→解方程組,得出a1,q→寫出通項(xiàng)公式.(2)通項(xiàng)公式變形法:觀察已知兩項(xiàng)是否有關(guān)系→用an=am·qn-m(n,m∈N+)來(lái)聯(lián)系這兩項(xiàng)→寫出通項(xiàng)公式.[一點(diǎn)通]272.在等比數(shù)列通項(xiàng)公式an=a1qn-1中,含有首項(xiàng)a1,第n項(xiàng)an,公比q,項(xiàng)數(shù)n四個(gè)量,如果知道其中的三個(gè),便可求出另外一個(gè).3.在通項(xiàng)公式的有關(guān)計(jì)算中,要注意使用函數(shù)與方程及整體代換的思想的應(yīng)用.2.在等比數(shù)列通項(xiàng)公式an=a1qn-1中28第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件29解析:由通項(xiàng)公式得a1q5=aq3,又a1=2,∴q2=4.又an>0,∴q=2.答案:C31解析:由通項(xiàng)公式得a1q5=aq3,又a1=2,3130第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件31答案:A答案:A323.已知等比數(shù)列{an}中,a5=20,a15=5,求a20.3.已知等比數(shù)列{an}中,a5=20,a15=5,求a2033第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件34第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件35[例2]已知數(shù)列{an}滿足a1=1,an+1=2an+1.(1)證明:數(shù)列{an+1}是等比數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式.[例2]已知數(shù)列{an}滿足a1=1,an+1=2an+136第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件37(2)由(1)知{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列.∴an+1=2·2n-1=2n.即an=2n-1.(2)由(1)知{an+1}是以a1+1=238[一點(diǎn)通]判斷或證明一個(gè)數(shù)列是等比數(shù)列的常用方法是定義,證明時(shí)要注意定義中的條件,“任何一項(xiàng)不等于0”、“從第二項(xiàng)起”、“同一個(gè)”常數(shù).[一點(diǎn)通]判斷或證明一個(gè)數(shù)列是等比數(shù)列的394.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個(gè)數(shù)列:①{a};②{pan}(p為非零常數(shù));③{an·an+1};④{an

+an+1}中等比數(shù)列的個(gè)數(shù)是()A.1B.2C.3D.43n4.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個(gè)數(shù)列:3n40第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件41答案:D答案:D425.已知數(shù)列{an}滿足:lgan=3n+5,證明:數(shù)列{an}是等比數(shù)列.5.已知數(shù)列{an}滿足:lgan=3n+5,證明:數(shù)列43第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件44第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件45第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件46第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件47[例3]有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,并且第一個(gè)數(shù)與第四個(gè)數(shù)的和是16,第二個(gè)數(shù)與第三個(gè)數(shù)的和是12,求這四個(gè)數(shù).[思路點(diǎn)撥]根據(jù)題意可以設(shè)前三個(gè)數(shù)得第四個(gè)數(shù),也可以設(shè)后三個(gè)數(shù)得第一個(gè)數(shù),還可以設(shè)前兩個(gè)數(shù)得后兩個(gè)數(shù),然后建立方程組求解.[例3]有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列48第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件49所以,當(dāng)a=4,d=4時(shí),所求四個(gè)數(shù)為0,4,8,16;當(dāng)a=9,d=-6時(shí),所求四個(gè)數(shù)為15,9,3,1.故所求四個(gè)數(shù)為0,4,8,16或15,9,3,1. (12分)所以,當(dāng)a=4,d=4時(shí),所求四個(gè)數(shù)為0,4,8,16;50第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件51第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件52第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件537.三個(gè)正數(shù)成等差數(shù)列,它們的和等于15,如果它們分別加上1,3,9就成為等比數(shù)列,求這三個(gè)數(shù).7.三個(gè)正數(shù)成等差數(shù)列,它們的和等于15,如果它們分548.已知四個(gè)數(shù),前3個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,中間兩個(gè)數(shù)之積為16,第一個(gè)數(shù)與第四個(gè)數(shù)之積為-128,則如何求這四個(gè)數(shù)?8.已知四個(gè)數(shù),前3個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比55第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件56由①得a2=16q,③由②得a2(-1)·q=-128.將③代入得:q2-2q-8=0,∴q=4或q=-2.又a2=16q,∴q>0.∴q=4.∴a=±8.當(dāng)a=8時(shí),所求四個(gè)數(shù)分別為:-4,2,8,32.當(dāng)a=-8時(shí),所求四個(gè)數(shù)分別為:4,-2,-8,-32.由①得a2=16q,571.等比數(shù)列的項(xiàng)的符號(hào)有一定的規(guī)律:各項(xiàng)都是正值;各項(xiàng)都是負(fù)值;正負(fù)相間(此時(shí)所有奇數(shù)項(xiàng)符號(hào)相同,所有偶數(shù)項(xiàng)符號(hào)相同).1.等比數(shù)列的項(xiàng)的符號(hào)有一定的規(guī)律:各項(xiàng)都58第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件59第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件602022/12/29第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式2022/12/29第一部分第一章§3第一課時(shí)等比數(shù)列的概念61第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件623.1等比數(shù)列3.1等比數(shù)列63第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式64第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件65第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件66問(wèn)題1:這幾個(gè)數(shù)列,從相鄰項(xiàng)的關(guān)系上看,有什么共同特征?提示:從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比是同一個(gè)常數(shù).問(wèn)題1:這幾個(gè)數(shù)列,從相鄰項(xiàng)的關(guān)系上看,有67第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件68等比數(shù)列的定義及通項(xiàng)公式等比數(shù)列如果一個(gè)數(shù)列從

起,每一項(xiàng)與它的前一項(xiàng)的比都等于

,那么這個(gè)數(shù)列叫作等比數(shù)列,

叫作等比數(shù)列的公比,通常用字母q表示(q≠0)通項(xiàng)公式首項(xiàng)為a1,公比為q的等比數(shù)列的通項(xiàng)公式是

(a1≠0,q≠0)第2項(xiàng)同一個(gè)常數(shù)這個(gè)常數(shù)an=a1qn-1等比數(shù)列的定義及通項(xiàng)公式等比數(shù)列如果一個(gè)數(shù)列從69第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件70問(wèn)題1:若數(shù)列2,a,4,b,…為等比數(shù)列,a,b的值分別是什么?問(wèn)題2:在問(wèn)題1的條件下,a,4,b存在的關(guān)系是什么?提示:42=ab.問(wèn)題1:若數(shù)列2,a,4,b,…為等比數(shù)列,71等比中項(xiàng)等比中項(xiàng)72第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件73第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件74問(wèn)題:以上五個(gè)數(shù)列各有怎樣的增減性?提示:①遞減數(shù)列;②常數(shù)列;③遞增數(shù)列;④遞增數(shù)列;⑤遞減數(shù)列.問(wèn)題:以上五個(gè)數(shù)列各有怎樣的增減性?75a1a1>0q的范圍0<q<1q=1q>1{an}的增減性

常數(shù)列

遞減數(shù)列遞增數(shù)列a1a1>0q的范圍0<q<1q=1q>1{an}的增減性76a1a1<0q的范圍0<q<1q=1q>1{an}的增減性

常數(shù)列遞增數(shù)列遞減數(shù)列a1a1<0q的范圍0<q<1q=1q>1{an}的增減性771.對(duì)等比數(shù)列定義的理解應(yīng)注意以下幾點(diǎn):(1)等比數(shù)列每一項(xiàng)都可能作分母,故每一項(xiàng)均不能為0,因此q也不能為0.(2)必須是“從第2項(xiàng)起”,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù).(3)一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比是常數(shù),這個(gè)數(shù)列不一定是等比數(shù)列,定義中“同一個(gè)”常數(shù)非常重要,切不可丟掉.1.對(duì)等比數(shù)列定義的理解應(yīng)注意以下幾點(diǎn):78(4)非零常數(shù)列既是等差數(shù)列,又是等比數(shù)列.2.等比數(shù)列的增減性既與首項(xiàng)有關(guān),也與公比q有關(guān).3.在a,b同號(hào)時(shí),a與b才有等比中項(xiàng),而且有兩個(gè),它們互為相反數(shù);若a,b異號(hào)時(shí),a與b沒(méi)有等比中項(xiàng).(4)非零常數(shù)列既是等差數(shù)列,又是等比數(shù)列.79第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件80第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件81[思路點(diǎn)撥]將已知條件轉(zhuǎn)化為a1和q的方程或方程組,通過(guò)解方程或方程組求解a1,q,進(jìn)而解決其他問(wèn)題.[思路點(diǎn)撥]將已知條件轉(zhuǎn)化為a1和q的方82第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件83第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件84第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件85第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件86[一點(diǎn)通]1.求等比數(shù)列通項(xiàng)公式的方法(1)方程組法:用a1,q表示出已知兩項(xiàng)→聯(lián)立方程組→解方程組,得出a1,q→寫出通項(xiàng)公式.(2)通項(xiàng)公式變形法:觀察已知兩項(xiàng)是否有關(guān)系→用an=am·qn-m(n,m∈N+)來(lái)聯(lián)系這兩項(xiàng)→寫出通項(xiàng)公式.[一點(diǎn)通]872.在等比數(shù)列通項(xiàng)公式an=a1qn-1中,含有首項(xiàng)a1,第n項(xiàng)an,公比q,項(xiàng)數(shù)n四個(gè)量,如果知道其中的三個(gè),便可求出另外一個(gè).3.在通項(xiàng)公式的有關(guān)計(jì)算中,要注意使用函數(shù)與方程及整體代換的思想的應(yīng)用.2.在等比數(shù)列通項(xiàng)公式an=a1qn-1中88第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件89解析:由通項(xiàng)公式得a1q5=aq3,又a1=2,∴q2=4.又an>0,∴q=2.答案:C31解析:由通項(xiàng)公式得a1q5=aq3,又a1=2,3190第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件91答案:A答案:A923.已知等比數(shù)列{an}中,a5=20,a15=5,求a20.3.已知等比數(shù)列{an}中,a5=20,a15=5,求a2093第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件94第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件95[例2]已知數(shù)列{an}滿足a1=1,an+1=2an+1.(1)證明:數(shù)列{an+1}是等比數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式.[例2]已知數(shù)列{an}滿足a1=1,an+1=2an+196第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件97(2)由(1)知{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列.∴an+1=2·2n-1=2n.即an=2n-1.(2)由(1)知{an+1}是以a1+1=298[一點(diǎn)通]判斷或證明一個(gè)數(shù)列是等比數(shù)列的常用方法是定義,證明時(shí)要注意定義中的條件,“任何一項(xiàng)不等于0”、“從第二項(xiàng)起”、“同一個(gè)”常數(shù).[一點(diǎn)通]判斷或證明一個(gè)數(shù)列是等比數(shù)列的994.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個(gè)數(shù)列:①{a};②{pan}(p為非零常數(shù));③{an·an+1};④{an

+an+1}中等比數(shù)列的個(gè)數(shù)是()A.1B.2C.3D.43n4.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個(gè)數(shù)列:3n100第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件101答案:D答案:D1025.已知數(shù)列{an}滿足:lgan=3n+5,證明:數(shù)列{an}是等比數(shù)列.5.已知數(shù)列{an}滿足:lgan=3n+5,證明:數(shù)列103第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件104第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件105第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件106第一部分第一章§3第一課時(shí)等比數(shù)列的概念及通項(xiàng)公式課件107[例3]有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,并且第一個(gè)數(shù)與第四個(gè)數(shù)的和是16,第二個(gè)數(shù)與第三個(gè)數(shù)的和是12,求這四個(gè)數(shù).[思路點(diǎn)撥]根據(jù)題意可以設(shè)前三個(gè)數(shù)得第四個(gè)數(shù),也可以設(shè)后三個(gè)數(shù)得第一個(gè)數(shù),還可以設(shè)前兩個(gè)數(shù)得后兩個(gè)數(shù),然后建立方程組求解.[例3]有四個(gè)數(shù),其中前三個(gè)數(shù)成等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論