版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在邊長為6的菱形中,,以點為圓心,菱形的高為半徑畫弧,交于點,交于點,則圖中陰影部分的面積是()A. B. C. D.2.若ab<0,則正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的大致圖象可能是()A. B. C. D.3.某校決定從三名男生和兩名女生中選出兩名同學(xué)擔(dān)任校藝術(shù)節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.4.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值5.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm26.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.57.sin45°的值等于()A. B.1 C. D.8.若a+|a|=0,則等于()A.2﹣2a B.2a﹣2 C.﹣2 D.29.已知關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B. C. D.10.已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,其橫坐標(biāo)為1,則一次函數(shù)y=bx+ac的圖象可能是(
)A.
B.
C.
D.二、填空題(共7小題,每小題3分,滿分21分)11.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.12.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.13.小球在如圖所示的地板上自由地滾動,并隨機(jī)地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.14.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.15.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為_____.16.如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標(biāo)為(﹣2,﹣3),則k的值為_____.17.正十二邊形每個內(nèi)角的度數(shù)為.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.19.(5分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.設(shè)以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標(biāo)為x,當(dāng)4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當(dāng)x=c時,y=0,當(dāng)0<x<c時,y>0,試比較ac與l的大小,并說明理由.20.(8分)某汽車廠計劃半年內(nèi)每月生產(chǎn)汽車20輛,由于另有任務(wù),每月上班人數(shù)不一定相等,實每月生產(chǎn)量與計劃量相比情況如下表(增加為正,減少為負(fù))生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?半年內(nèi)總生產(chǎn)量是多少?比計劃多了還是少了,增加或減少多少?21.(10分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.22.(10分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.23.(12分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問題:(1)請用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時,兩人相距15km?24.(14分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
由菱形的性質(zhì)得出AD=AB=6,∠ADC=120°,由三角函數(shù)求出菱形的高DF,圖中陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積,根據(jù)面積公式計算即可.【詳解】∵四邊形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD?sin60°=6×=3,
∴陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積=6×3=18-9π.
故選B.【點睛】本題考查了菱形的性質(zhì)、三角函數(shù)、菱形和扇形面積的計算;由三角函數(shù)求出菱形的高是解決問題的關(guān)鍵.2、D【解析】
根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當(dāng)a>0,b<0時,正比例函數(shù)y=ax數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;(2)當(dāng)a<0,b>0時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項D符合.故選D【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.3、B【解析】試題解析:列表如下:∴共有20種等可能的結(jié)果,P(一男一女)=.
故選B.4、B【解析】
解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.5、C【解析】
已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.【詳解】根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關(guān)鍵.6、A【解析】
根據(jù)直線外一點和直線上點的連線中,垂線段最短的性質(zhì),可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質(zhì),解題關(guān)鍵是利用垂線段的性質(zhì).7、D【解析】
根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應(yīng)用,能熟記特殊角的三角函數(shù)值是解此題的關(guān)鍵,難度適中.8、A【解析】
直接利用二次根式的性質(zhì)化簡得出答案.【詳解】∵a+|a|=0,∴|a|=-a,則a≤0,故原式=2-a-a=2-2a.故選A.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確化簡二次根式是解題關(guān)鍵.9、C【解析】
解:∵關(guān)于x的一元二次方程有實數(shù)根,∴△==,解得m≥1,故選C.【點睛】本題考查一元二次方程根的判別式.10、B【解析】分析:根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,可得b>0,根據(jù)交點橫坐標(biāo)為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標(biāo)為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.故選B.點睛:考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關(guān)鍵是得到b>0,ac<0.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設(shè)這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.12、3:2【解析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.13、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41814、3﹣【解析】
首先設(shè)點B的橫坐標(biāo),由點B在拋物線y1=x2(x≥0)上,得出點B的坐標(biāo),再由平行,得出A和C的坐標(biāo),然后由CD平行于y軸,得出D的坐標(biāo),再由DE∥AC,得出E的坐標(biāo),即可得出DE和AB,進(jìn)而得解.【詳解】設(shè)點B的橫坐標(biāo)為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標(biāo)求解,關(guān)鍵是利用平行的性質(zhì).15、﹣2【解析】
要求函數(shù)的解析式只要求出B點的坐標(biāo)就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據(jù)條件得到△ACO∽△ODB,得到:=1,然后用待定系數(shù)法即可.【詳解】過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設(shè)點A的坐標(biāo)是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因為點A在反比例函數(shù)y=的圖象上,∴mn=1.∵點B在反比例函數(shù)y=的圖象上,∴B點的坐標(biāo)是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,相似三角形的判定和性質(zhì),利用相似三角形的性質(zhì)求得點B的坐標(biāo)(用含n的式子表示)是解題的關(guān)鍵.16、1或﹣1【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關(guān)鍵是判斷出S四邊形CEOF=S四邊形HAGO.17、【解析】
首先求得每個外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數(shù)是:=30°,則每一個內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(biāo)(6,﹣14)(4,﹣5);(3).【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)垂線間的關(guān)系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標(biāo);
(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值【詳解】解:(1)將A,B點坐標(biāo)代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當(dāng)PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯(lián)立PA與拋物線,得,解得(舍),,即P(6,﹣14);當(dāng)PB⊥AB時,PB的解析式為y=﹣2x+3,聯(lián)立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(biāo)(6,﹣14)(4,﹣5);(3)如圖:,∵M(jìn)(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當(dāng)t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設(shè)M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【點睛】本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關(guān)鍵19、(Ⅰ)①y=x2+3x②當(dāng)3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】
(I)①由拋物線的頂點為A(-2,-3),可設(shè)拋物線的解析式為y=a(x+2)2-3,代入點B的坐標(biāo)即可求出a值,此問得解,②根據(jù)點A、B的坐標(biāo)利用待定系數(shù)法可求出直線AB的解析式,進(jìn)而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當(dāng)點P在第二象限時,x<0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,當(dāng)點P在第四象限時,x>0,通過分割圖形求面積法結(jié)合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結(jié)論,(2)由當(dāng)x=c時y=0,可得出b=-ac-1,由當(dāng)0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進(jìn)而可得出b≤-2ac,結(jié)合b=-ac-1即可得出ac≤1.【詳解】(I)①設(shè)拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經(jīng)過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設(shè)直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當(dāng)點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當(dāng)點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當(dāng)3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當(dāng)x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當(dāng)0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數(shù)法求二次(一次)函數(shù)解析式、三角形的面積、梯形的面積、解一元一次不等式組、二次函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)①巧設(shè)頂點式,代入點B的坐標(biāo)求出a值,②分點P在第二象限及點P在第四象限兩種情況找出x的取值范圍,(2)根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征結(jié)合二次函數(shù)的性質(zhì),找出b=-ac-1及b≤-2ac.20、(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)9輛;(2)半年內(nèi)總生產(chǎn)量是121輛.比計劃多了1輛.【解析】
(1)由表格可知,四月生產(chǎn)最多為:20+4=24;六月最少為:20-5=15,兩者相減即可求解;
(2)把每月的生產(chǎn)量加起來即可,然后與計劃相比較.【詳解】(1)+4-(-5)=9(輛)答:生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)9輛.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(輛),因為121>120121-120=1(輛)答:半年內(nèi)總生產(chǎn)量是121輛.比計劃多了1輛.【點睛】此題主要考查正負(fù)數(shù)在實際生活中的應(yīng)用,所以學(xué)生在學(xué)這一部分時一定要聯(lián)系實際,此題主要考查有理數(shù)的加減運算法則.21、(1)證明見解析;(2)+;(3)的值不變,.【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.22、(1)證明見解析;(2).【解析】
先利用等腰三角形的性質(zhì)得到,利用切線的性質(zhì)得,則CE∥BD,然后證明得到BE=CE;作于F,如圖,在Rt△OBC中利用正弦定義得到BC=5,所以,然后在Rt△BEF中通過解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025權(quán)威圖書購銷合同協(xié)議
- 高校安全防護(hù)系統(tǒng)采購合同管理
- 城市綠化租賃代理合同
- 農(nóng)貿(mào)市場電梯井道改造協(xié)議
- 二零二五年度花卉新品種研發(fā)與推廣供貨合作合同3篇
- 石油管道檢測合同模板
- 2025年度行政指導(dǎo)與行政合同協(xié)同實施協(xié)議(智慧社區(qū))3篇
- 高速公路套筒連接安裝協(xié)議
- 二零二五年房地產(chǎn)項目居間服務(wù)合同范本3篇
- 門窗公司設(shè)計師聘用合同范本
- 大學(xué)面試口頭自我介紹
- 廣告宣傳物料投標(biāo)方案(技術(shù)方案)
- 集合復(fù)習(xí)-章課件
- 策略家庭治療案例
- 數(shù)學(xué)優(yōu)生培養(yǎng)計劃與措施
- 消防控制室值班服務(wù)各項管理制度
- 三年級下冊口算天天100題(A4打印版)
- 在眼科護(hù)理中的病人安全管理
- 商業(yè)秘密保護(hù)指導(dǎo)意見宣傳培訓(xùn)方案書
- 《腫瘤流行病學(xué)》課件
- 采購缺乏計劃性的整改措施
評論
0/150
提交評論