![九年級圓中的計算問題_第1頁](http://file4.renrendoc.com/view/9f0fbd15b55434998c85dab473fdb8ca/9f0fbd15b55434998c85dab473fdb8ca1.gif)
![九年級圓中的計算問題_第2頁](http://file4.renrendoc.com/view/9f0fbd15b55434998c85dab473fdb8ca/9f0fbd15b55434998c85dab473fdb8ca2.gif)
![九年級圓中的計算問題_第3頁](http://file4.renrendoc.com/view/9f0fbd15b55434998c85dab473fdb8ca/9f0fbd15b55434998c85dab473fdb8ca3.gif)
![九年級圓中的計算問題_第4頁](http://file4.renrendoc.com/view/9f0fbd15b55434998c85dab473fdb8ca/9f0fbd15b55434998c85dab473fdb8ca4.gif)
![九年級圓中的計算問題_第5頁](http://file4.renrendoc.com/view/9f0fbd15b55434998c85dab473fdb8ca/9f0fbd15b55434998c85dab473fdb8ca5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第四講圓中的計算問題【知識點一】弧長公式敘述圖例弧長公式如果弧長為1,他所對的圓心角度數(shù)為n0,所在圓的半徑為r,那么弧長,n“nr1——?2r——360180Ar、noO'B(1)在弧長公式中,n表示1。的圓心的倍數(shù),因此“n”和“180”都不帶單位牢記(2)從公式中可以看出,弧的長度由弧的半徑和弧所對的圓心角確定。在同圓或等圓中,所對的圓心角越大,弧越長;相等的圓心角所對的弧,半徑越大,弧越長。牢記拓展:在lU這一計算公式中,已知l,n,r中的兩個量,可以求剩下180的一個量。例1、如圖,在。O中,/C=30°,AB=2則劣弧AB的長為:(O'.XICax"rBA.B.—C.—D.一例2、如圖,將邊長為1,中心為點O的正方形ABCDS直線l上按順時針方向不滑動地每秒轉(zhuǎn)動90°.(1)第1秒點O經(jīng)過的路線長為,第2秒點O經(jīng)過的路線長為,第2017秒點O經(jīng)過的路線長為;(2)分別求出第1秒、第2秒、第2017秒點A經(jīng)過的路線長.BCBC【知識點二】扇形的面積公式敘述圖例扇形cnc21nrc【知識點二】扇形的面積公式敘述圖例扇形cnc21nrcS——?r2———?r3602180Ilr.2公式因此扇形的面積計算公式為2.cnrf1S.或S-lr3602如果設(shè)圓心角是n0的扇形面積是S,弧長為1,圓的半徑為r,那么扇形的面積為B.O牢記拓展:(1)對于扇形,我們可以把它看做是底邊為圓弧的曲邊三角形,這個曲邊三角形的底邊長是l,高是半徑r,類似于三角形的面積的計算公式,得S11r.2(2)在計算扇形的面積時,要先分析已知條件,當(dāng)已知條件中有半徑和圓2心角時,可選用公式SQL.;當(dāng)已知條件中有弧長和半徑時,可選用3601公式S—lr.來進行計算。2(3)已知Sl、n、r四個室中的任忠兩個重,可求出另外兩個重。(4)扇形的周長包含兩條半徑和一條弧,即扇形的周長為2rl.例3、一個扇形的圓心角為120°,面積為12cm2,則此扇形的半徑為cm2。例4、如圖,在矩形ABC融,AB=2DA以點A為圓心,AB長為半徑的圓弧交DC于點E,交AD的延長線于點F,設(shè)DA=2.⑴求線段EC的長;(2)求圖中陰影部分的面積。例5、在△ABC中,AB=AC,AB=8BC=1Z分別以ARAC為直徑作半圓,則圖中陰影部分的面積是()A.6412,7B.1632C.1612,7D.6432例6、如圖,ABCD是。O的兩條互相垂直的直徑,且AB=2以點B為圓心,BA為半徑畫弧AE交CD?長線于點E,又四邊形EFG以正方形,求陰影部分的面積。ACAC【習(xí)題鞏固】33AC=AO=6D為AC的中點,當(dāng)弦【習(xí)題鞏固】33AC=AO=6D為AC的中點,當(dāng)弦AC沿扇「33C.—D.4A.32、如圖,扇形AOB中,/AOB=150,形運動時,點D所經(jīng)過的路程為(3、如圖所示,A是半徑為1的。。外一點,OA=2AB是。。的切線,B是切點,弦BC//OA,連接AC則陰影部分的面積等于()C.D.C.D.4、已知扇形的圓心角為45°,半徑長為12,則該扇形的弧長為5、如圖,在矩形ABC時,AB=8AD=6將夕!形ABCDt直線l上按順時針方向每次不滑動地轉(zhuǎn)動90°,轉(zhuǎn)動3次后停止,則頂點A經(jīng)過的路長為6、如圖,點D在。O的直徑AB的延長線上,點C在。。上,且AC=CD/ACD=120,CD是。。的切線,若。O的半徑為2,則圖中陰影部分的面積為.AOBDAOBD三、解答題7、如圖,矩形ABCm,AD=4AB=273,以點A為圓心,AD為半徑畫弧交BC于點E,求所得的扇形的弧長DEBEC
DEBEC8、如圖,△ABC^,以AB為直徑的。O交AC于點D,/DBCWBAC.(1)求證:BC是。O的切線;⑵若。。的半徑為2,/BAC=30,求陰影部分的面積?!局R點三】圓錐的側(cè)面積與全面積「敘述圖例圓有錐關(guān)的概圓錐是L個由底前和一個側(cè)面圍成的,我們把圓錐底間圓周上任意一點與圓錐頂點的連線叫做圓錐的母線,連接頂點與底間圓心的線段叫做圓錐的高//卜念一Z1N卜圓錐側(cè)面積與全積的面設(shè)圓錐額底面半徑為r,母線長為l,則:C1一.S側(cè)一l?2rrl,2S全S側(cè)5底=rlr2.4//Lr記車(1)圓錐的母線長都相等;(2)圓錐的高、圓錐底面半徑以及過該半徑外端的母線構(gòu)成一個直角三角形。拓展:圓錐的側(cè)面展開圖是半徑等于母線,弧長等于圓錐底面圓的周長的扇形。例7、一個圓錐的側(cè)面積是底面積的2倍,則圓錐側(cè)面展開圖的扇形的圓心角是A.1200B.1800C.240°D,300°例8、如圖,現(xiàn)有一圓心角為90°,半徑為80cm的扇形鐵皮,用它恰好圍成一個圓錐形的量筒。如果用其他鐵片再做一個圓形蓋子把量筒底部密封(接縫都忽略不計)求:(1)該圓錐蓋子的半徑為多少cm?⑵制作這個密封量筒,共用鐵片多少cm2?例9、如圖,如果從半徑為9cm的圓形紙片減去【圓周的扇形,將留下的扇形圍3成一個圓錐(接縫處不重疊),那么這個圓錐的高是多少?例10、如圖,Rt^ABC中,/B=90°,AC=12cm,BC=5cm,■其繞直角邊AB所在的直線旋轉(zhuǎn)一周得到一個圓錐,則這個圓錐的側(cè)面積為多少?
【習(xí)題鞏固】一、選擇題1、小紅需要用扇形薄紙板制作成底面半徑為9c項高為12cm的圓錐形生日帽,TOC\o"1-5"\h\z則該扇形薄紙板的圓心角為()A.1500B.1800C.216°D,270°2、如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OABt剪下一個最大的扇形OCD用此剪下的扇形鐵皮圍成一個圓錐的側(cè)面(不計損耗),則該圓錐的高為()A.10cmB.15cmC.10..3cmD.20,2cm3、如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是.11A.-abB.acC.abD.ac22題第5題圖)二、填空題4、一個圓錐的側(cè)面展開圖是半徑為8cm圓心角為120°的扇形,則此圓錐底面圓的半徑為.5、如圖,用圓心角為120。,半徑為6的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是.6、小明要制作一個圓錐形模型,其側(cè)面積是由一個半徑為9cm,圓心角為240。的扇形紙板制成的,還需要一塊圓形紙板做底面,那么這塊圓形紙板的半徑為cm三、解答題7、如圖,圓錐底面半徑為9cm,母線長為36cm,求圓錐側(cè)面展開圖的圓心角的度數(shù)。8、如圖,沿一條母線將圓錐側(cè)面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑r=2cm,扇形的圓心角=120°,求該圓錐的高?!局R點四】圓內(nèi)接正多邊形及相關(guān)定義頂點都在同一圓上的正多邊形叫做圓內(nèi)接正多邊形,這個圓叫做該正多邊形的外接圓。把一個圓n(n3)等分,依次連接各分點,我們就可以做出一個圓內(nèi)接正n邊形。名稱概念中心一個正多邊形的外接圓的圓心叫做這個正多邊形的中心名稱概念中心一個正多邊形的外接圓的圓心叫做這個正多邊形的中心半徑外接圓的半徑叫做正多邊形的半徑中心角正多邊形每一邊所對的圓心角叫做正多邊形的中心角邊心距中心到正多邊形的一邊的距離叫做正多邊形的邊心距圖形中心角才,O半徑R邊心距拓展延伸:正多邊形都是軸對稱圖形,一個正n邊形有n條對稱軸,每條對稱軸都經(jīng)過正n邊形的中心。若n為偶數(shù),則正n邊形又是中心對稱圖形,它的中心就是對稱中心。例10、下列給出五個命題:①正多邊形都有內(nèi)切圓和外接圓,且這兩個圓是同心圓;②各邊相等的圓外切多邊形是正多邊形;③各角都相等的圓內(nèi)接多邊形是正多邊形;④正多邊形既是軸對稱圖形又是中心對稱圖形;⑤正n⑤正n變形的中心角n幽,且與每個外角相等。其中正確命題有:nA.2個B.3個C.4個D.5個【知識點五】圓內(nèi)接正多邊形的相關(guān)計算1、內(nèi)角:正n邊形的每個內(nèi)角為(n2)?180=180。360-2、中心角:正n邊形的每個中心角為360n
3、外角:正3、外角:正n邊形的每個外角為36004、周長:正n邊形的周長1nnan(an為邊長)1?一5、面積:正n邊形的面積Sn-rn1n(rn為邊心距,1n為周長)2例11、如圖,已知。O的內(nèi)接正六邊形ABCDE的邊心距OMfe73cm,則。。的半徑為cm半徑為cm.【習(xí)題鞏固】1、(15成都中考)如圖(參考例11圖),正六邊形ABCDE內(nèi)接于。O,半徑為4,則這個正六邊形的邊心距OMf口BC的長分別為:()A.2,一B.2.3,C.3,——D.2/3,——3332、AOAB1以正多邊形相鄰的兩個頂點A、B與它的中心O為頂點的三角形,若AOAB勺一個內(nèi)角為70°,則該正多邊形的邊數(shù)為.3(思考題)某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時,進行如下討論:甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.乙同學(xué):我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教部編版道德與法治八年級下冊:2.1 《堅持依憲治國》聽課評課記錄1
- 衛(wèi)生醫(yī)療年度個人總結(jié)
- 新員工工作計劃書
- 高三年級期末總結(jié)
- 小學(xué)三年級語文教材教學(xué)計劃
- 濟南城市房屋租賃合同
- 口腔執(zhí)業(yè)醫(yī)師聘用合同范本
- 押運員聘用合同范本
- 魯教版地理七年級下冊5.2《北方地區(qū)和南方地區(qū)》聽課評課記錄
- 預(yù)制樓梯灌漿料 施工方案
- 學(xué)校安全隱患排查治理工作臺賬
- GB/T 8151.13-2012鋅精礦化學(xué)分析方法第13部分:鍺量的測定氫化物發(fā)生-原子熒光光譜法和苯芴酮分光光度法
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- GB/T 23800-2009有機熱載體熱穩(wěn)定性測定法
- T-SFSF 000012-2021 食品生產(chǎn)企業(yè)有害生物風(fēng)險管理指南
- 2023年上海市閔行區(qū)精神衛(wèi)生中心醫(yī)護人員招聘筆試題庫及答案解析
- 水庫工程施工組織設(shè)計
- 氣流粉碎機課件
- 梁若瑜著-十二宮六七二象書增注版
- SJG 74-2020 深圳市安裝工程消耗量定額-高清現(xiàn)行
- 2017年安徽省中考數(shù)學(xué)試卷及答案解析
評論
0/150
提交評論