浙教版2020八年級數(shù)學下冊期中綜合復習培優(yōu)訓練題A(附答案詳解)_第1頁
浙教版2020八年級數(shù)學下冊期中綜合復習培優(yōu)訓練題A(附答案詳解)_第2頁
浙教版2020八年級數(shù)學下冊期中綜合復習培優(yōu)訓練題A(附答案詳解)_第3頁
浙教版2020八年級數(shù)學下冊期中綜合復習培優(yōu)訓練題A(附答案詳解)_第4頁
浙教版2020八年級數(shù)學下冊期中綜合復習培優(yōu)訓練題A(附答案詳解)_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙教版2020八年級數(shù)學下冊期中綜合復習培優(yōu)訓練題 A(附答案詳解)1.元旦將至,九(1)班全體學生互贈賀卡,共贈賀卡 1980張,問九(1)班共有多少名學生?設九(1)班共有x名學生,1.元旦將至,九(1)班全體學生互贈賀卡,共贈賀卡 1980張,問九(1)班共有多少名學生?設九(1)班共有x名學生,那么所列方程為(x21980x(x1)19801—x(x1)21980D.x(x1)19802.下列方程中,2.下列方程中,二次方程是(>/i5=0=0C.(x-1)(x+2)=1D.3.若J5下是整數(shù),則正整數(shù)n的最小值是(23C.>/i5=0=0C.(x-1)(x+2)=1D.3.若J5下是整數(shù),則正整數(shù)n的最小值是(23C.D.4.x1是關于x的二次方程x2mx50的一個根,則此方程的另一個根是40A.12歲B.13歲40A.12歲B.13歲C.14歲D.15歲6.設a,b是方程x2 x20170的兩個實數(shù)根,則a2A.2015B.2016C.20177.J2x1有意義,那么x的取值范圍是()1A.x>一1- B.x>—一1C.x—D1.x一2ab的值為( )D.2018)A.5B.—5C.4D.—45.某校共有40名初中生參加足球興趣小組,他們的年齡統(tǒng)計情況如圖所示,則這金額/元5102050100人數(shù)4161596則他們捐款金額的中位數(shù)和平均數(shù)分別是()8.某班學生積極參加獻愛心活動,該班 50名學生的捐款統(tǒng)計情況如下表:A.10,20.6B.20,20.6C.10,30.6D.20,30.6

A.10,20.6B.20,20.6C.10,30.6D.20,30.6人數(shù)3421分數(shù)808590959.在武漢教育電視臺組織的一次漢字聽寫大賽中,10名參賽選手得分情況如下:那么這10名選手所得分數(shù)的中位數(shù)和眾數(shù)分別是( )A.85和85 B.85.5和85 C.85和4 D.85.5和4.函數(shù)y,3x6中自變量x的取值范圍在數(shù)軸上表示正確的是( )B.D.?3-2T012-3-2-1012B.D.?3-2T012-3-2-1012.若方程工,一3工一3二0兩根為X1,X2,則X1?X2=.如果JX?JX__6Jx(x6),那么X的取值范圍是.若將方程x2+6x=7化為(x+m)2=16頡Um=..一射擊運動員擊靶10次,2次命中10環(huán),3次命中9環(huán),5次命中8環(huán),則他平均命中環(huán)。.若關于x的一元二次方程x24xa0有兩個相等的實數(shù)根,則a的值是.16.如果X1、X2是一元二次方程x2-6x-5=0的兩個實根,那么X12+X22=..程大位所著《算法統(tǒng)宗》是一部中國傳統(tǒng)數(shù)學重要的著作. 在《算法統(tǒng)宗》中記載:平地秋千未起,踏板離地一尺.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高土素好奇,算出索長有幾? ”(注釋)1步=5尺.譯文:當秋千靜止時,秋千上的踏板離地有1尺高,如將秋千的踏板往前推動兩步 (10尺)時,踏板就和人一樣高,已知這個人身高是 5尺.美麗的姑娘和才子們,每天都來爭蕩秋千,歡聲笑語終日不斷.好奇的能工巧匠,能算出這秋千的繩索長是多少嗎? ”如圖,假設秋千的繩索長始終保持直線狀態(tài), OA是秋千的靜止狀態(tài),A是踏板,CD是地面,點B是推動兩步后踏板的位置,弧AB是踏板移動的軌跡.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.設繩索長OA=OB=x尺,則可列方程為O22x.現(xiàn)定義運算表”,對于任意實數(shù)a、b,都有£>★b=a2-3a+b,如:3*5=32-3X3+5,若x*2=6,則實數(shù)x的值是.如圖,在一塊長為36米,寬為20米的矩形試驗田中,計劃挖兩橫、兩豎四條水渠,橫、豎水渠的寬度比為1:2,要使四條水渠所占面積是這塊試驗田面積的五分之一,設橫向水渠的寬度為x米.根據(jù)題意所列方程是.實數(shù)a,b在數(shù)軸上對應點的位置如圖所示,化簡a.實數(shù)a,b在數(shù)軸上對應點的位置如圖所示,化簡a『ab2的結果是ti.用適當?shù)姆椒ń夥匠?①(x—3)2=2x—6②3x2+6x—5=0③(x—1)2-4(x+3)③(x—1)2-4(x+3)2=0(3—x)(4—x)=48-20x+2x222.(1)因式分解:9(m+n)2—(m—n)2;(2)解方程:(2)解方程:1-—x—=223x1x13(x2)解下列不等式組,并把解在數(shù)軸上表示上出來:先化簡,再求值:(1-)

x2x4x44,其中22x解下列不等式組,并把解在數(shù)軸上表示上出來:先化簡,再求值:(1-)

x2x4x44,其中22x22x150.23.2\12七3(1)°24.化簡下列各式。(1(1)418a 1a(2)',24(25.已知關于25.已知關于次方程(1)求證:此方程總有兩個不相等的實數(shù)根;(2)若x=-2是此方程的一個根,求實數(shù)26.已知實數(shù)a是方程x24x10的根.(1)計算2a28a2017的值;、一1(2)計算1a—的值.a.解方程x4—5x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設x2=y,那么x4=y2,于是原方程可變?yōu)閥2—5y+4=0①,解得y1=1,y2=4.當y=1時,x2=1,,x=土;當y=4時,x2=4,,x=上;「?原方程有四個根: x1=1,x2=—1,x3=2,x4=—2.(1)在由原方程得到方程①的過程中,利用 法達到的目的,?體現(xiàn)了數(shù)學的轉化思想.(2)解方程(x2+x)2—4(x2+x)—12=0.(3)解方程 x2-3|x|=18.已知一元二次方程(m-3)x2+2mx+m+1=0有兩個不相等的實數(shù)根, 并且這兩個根又不互為相反數(shù).(1)求m的取值范圍;(2)當m在取值范圍內取最小正偶數(shù)時,求方程的根..已知關于x的方程kx26x9 0(1)若方程有實數(shù)根,求k的取值范圍;(2)若方程有兩個相等的實數(shù)根,求k的值,并求此時方程的根。30.一個兩位數(shù)的十位數(shù)字比個位數(shù)字大 2,把這個兩位數(shù)的個位數(shù)字與十位數(shù)字互換后平方,所得的數(shù)值比原來的兩位數(shù)大 138,求原來的兩位數(shù).參考答案D【解析】由題意得:每個學生需要向其他 (x-1)個學生,則得方程得: xx11980.故選D.C【解析】試題解析:A.不是整式方程,B.二次項系數(shù)可能為零,D.含有兩個未知數(shù).故選C.點睛:一元二次方程需要滿足三個條件: 1含有一個未知數(shù), 2未知數(shù)的最高次數(shù)是2,3整式方程.C【解析】解:■V5n是整數(shù),且n為正整數(shù),-n^O,.-.n+5>5,5+n為9,16等等,即n的值為4,11等等,正整數(shù)n的最小值是4,故選C.點睛:本題考查了二次根式的定義和性質,注意: n是正整數(shù)可以得出n>0,n+5是一個完全平方數(shù).B【解析】設方程的另一根為X1,由根據(jù)根與系數(shù)的關系可得: X1?1=-5,,X1=-5.故選:B.C【解析】解:40個數(shù)據(jù)最中間的兩個數(shù)為第 20個數(shù)和第21個數(shù),而第20個數(shù)和第21個數(shù)都是14(歲),所以這40名學生年齡的中位數(shù)是14歲.故選C.B【解析】試題解析:Qa,b是方程x2x20170的兩個實數(shù)根a2a20170,ab1.a22aba2aab201712016.故選B.C【解析】試題分析:要使二次根式有意義,則必須滿足二次根式的被開方數(shù)為非負數(shù),即2x+1 0,解彳導:x-.2D【解析】試題分析:根據(jù)中位數(shù)的定義求解即可, 中位數(shù)是將一組數(shù)據(jù)從小到大重新排列后, 找出最中間兩個數(shù)的平均數(shù);可知共有 50個數(shù),且中位數(shù)是第25、26個數(shù)的平均數(shù),可得中位數(shù)是(20+20)登=20;平均數(shù)=」_(5X4+10X16+20X15+50X9+100X6)=30.6;50故選D.考點:1、中位數(shù);2、統(tǒng)計表;3、加權平均數(shù)A【解析】根據(jù)中位數(shù)與眾數(shù)的定義,易得 A.A【解析】試題分析:由函數(shù)yJ3x6,得到3x+6>0,解彳導:x>2,表示在數(shù)軸上,如圖所示:—1? ——>-3-2-1012故選A.考點:在數(shù)軸上表示不等式的解集;函數(shù)自變量的取值范圍.-3【解析】試題解析:根據(jù)一元二次方程根與系數(shù)的關系可得: x1?x2=-3.x>6

,解得x>6,由題意得:x60,解得x>6,由題意得:故答案為:x>63【解析】【詳解】在方程x2+6x=7的兩邊同時加上一次項系數(shù)的一半的平方,得 x2+6x+32=7+32,(x+3)2=16m=3.8.71 一【解析】試題解析:平均命中的環(huán)數(shù)是: —(10X2+9X3+8X5)=8.7(環(huán)).104.【解析】解::關于x的一元二次方程x24xa0有兩個相等的實數(shù)根,「.△=42-4a=16-4a=0,解得:a=4.故答案為:4.46【解析】根據(jù)韋達定理,得Xx26,x〔x2 5,則x12+x22=, 、2(x1x2)2x1x2365246.102+(x-5+1)2=x2【解析】試題分析:設繩索長OA=OB=x尺,由題意得,102+(x-5+1)2=x2.故答案為:102+(x-5+1)2=x2.【考點】由實際問題抽象出一元二次方程.-1或4?!窘馕觥扛鶕?jù)題中的新定義將x*2=6變形得:x2-3x+2=6,即x2-3x-4=0,將左邊因式分解得: (x-4)(x+1)=0,解得:x1=4,x2=-1。x12x3,x1 2x3.x12x3,x1 2x3...實數(shù)x的值是-1或4。所列方程是(36—4x)(20—2x)=36>20X(1—1)5【解析】根據(jù)試驗田的面積可列方程,設橫向水渠的寬度為x米,則豎直水渠的寬度為2x米,根據(jù)題意得(36—4x)(20-2x)=36X20X(1—1)5b2a【解析】由圖可知:a<0,a-b<0,則原式=-a-(a-b)=-2a+b=b2a.故答案為b2a.略【解析】試題分析:第(1)小題用直因式分解法;第(2)小題用公式法;第(3)小題用直接開方法;第(4)小題用因式分解法.2試題解析:1(x3) 2(x3),一2一一(x3) 2(x3)0,(x3)x32 0,x30,x50,x1 3,x25.一一2一—一23x26x50,TOC\o"1-5"\h\za3,b6,c 5,?2 _2 _ _ b 4ac6 43 5 96,bb24ac6.96 32,6x ,2a 6 3.2.6 .2.6x1 1 ,x2 1 .\o"CurrentDocument"3 3\o"CurrentDocument"2\o"CurrentDocument"(x1) 4x3,

x1 7,X2 —.64方程整理得,x213x360,x4x9 0,x40,x90,x1 4,x29.點睛:一元二次方程得解法:直接開方法,公式法,配方法,因式分解法 .因式分解法是最簡單的一種方法,但是不是所有方程都適用 .公式法是通用的一種方法,配方法對于二次項系數(shù)相對比較簡單時用.(1)4(2m+n)(m+2n);x=-4;-1x3在數(shù)軸上表示見解析;15x=-4;-1x3在數(shù)軸上表示見解析;1544(2m+n)(m+2n)(2)x=-4(3)-1x3(4)一154試題分析:根據(jù)二次根式的除法法則和零次哥,進行運算即可^試題解析:原式 2嘩M1率15143 3(1)1942a;(2)7石4.【解析】試題分析:(1)把二次根式化成最簡二次根式,再合并同類二次根式即可;(2)把二次根式化成最簡二次根式,再把括號去掉,最后合并同類二次根式即可試題解析:(1):試題解析:(1):w8a-a4、0.5a83.2a1x2a2.2a47.54.考點:二次根式的化簡求值.(1)見解析;(2)?;?【解析】試題分析:(1)根據(jù)根的判別式求出△的值,再進行判斷即可;(2)先把x=-2代入方程,然后解關于m的一元二次方程,即可求出m的值.試題解析:(1)證明::關于x的一元二次方程x2-2(m-1)x-m(m+2)=0.?.△=4X(m-1)2+4m(m+2)=8m2+4>0,???方程總有兩個不相等的實數(shù)根;(2)解:.x=-2是此方程的一個根,「?把x=-2代入方程中得到4-2(m-1)X(-2)-m(m+2)=0,4+4(m-1)-m(m+2)=0,,'m2-2m=0,??m1=0,m2=2.(1)2015;(2)5.【解析】1(1)已知實數(shù)a是萬程x24x10的根,解方程就可以求出所要求的值;(2)把1a一a變形利用整體思想把a24a10變?yōu)閍214a代入即可.解:(1)二.實數(shù)a是方程x24x10的根,2a24a10.

???2a28a20,即2a28a2.??2a28a20172015;11a11a「a11a11a「a24a10,4a?1'a214a.1a-1——5.aa換元降次【解析】(1)本題主要是利用換元法降次來達到把一元四次方程轉化為一元二次方程, 來求解,然后再解這個一元二次方程.(2)利用題中給出的方法先把 x2+x當成一個整體y來計算,求出y的值,再解一元二次方程;(3)設|x|二y,原方程可化為y2-3y-18=0,求出y的值,再即解絕對值方程.解:⑴換元降次(2)設x2+x=y,原方程可化為y2—4y—12=0,解得y1=6,y2=—2.由x2+x=6,得x1=—3,x2=2.由x2+x=—2,得方程x2+x+2=0,b2-4ac=1-4X2=-7<0,此時方程無解.所以原方程的解為x1=—3,x2=2.(3)原方程可化為|x|2—3|x|—18=0,設Ix|=y,原方程可化為y2-3y-18=0,解得y1=6,y2=—3.由Ix|=6,得x1=-6,x2=6.由|x|=-3,此時方程無解.所以原方程的解為x1=-6,x2=6.熏睛”本題應用了換元法,把關于x的方程轉化為關于y的方程,這樣書寫簡便且形象直觀,并且把方程化繁為簡化難為易,解起來更方便.(1)m>2且廿0且m^3;(2)x2V7,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論