版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,條件:,條件:,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.函數(shù)的部分圖象如圖所示,將函數(shù)的圖象向左平移個單位長度后得到的圖象,則下列說法正確的是()A.函數(shù)為奇函數(shù)B.函數(shù)的最小正周期為C.函數(shù)的圖象的對稱軸為直線D.函數(shù)的單調(diào)遞增區(qū)間為3.已知正實數(shù)x,y,z,滿足,則()A. B.C. D.4.已知命題p:?n∈N,2n>2021.那么A.?n∈N,2n≤2021 B.?n∈NC.?n∈N,2n≤2021 D.?n∈N5.某幾何體的三視圖如圖所示,則該幾何體的表面積是A. B.C. D.6.公元前6世紀,古希臘的畢達哥拉斯學派通過研究正五邊形和正十邊形的作圖,發(fā)現(xiàn)了黃金分割值約為0.618,這一數(shù)值也可以表示為.若.則()A. B.C.2 D.7.已知函數(shù),且在內(nèi)有且僅有兩個不同的零點,則實數(shù)的取值范圍是A. B.C. D.8.2020年12月17日凌晨,嫦娥五號返回器攜帶月球樣品在內(nèi)蒙古四子王旗預定區(qū)域安全著陸-嫦娥五號返回:艙之所以能達到如此髙的再入精度,主要是因為它采用彈跳式返回彈道,實現(xiàn)了減速和再入階段彈道調(diào)整,這與“打水漂”原理類似(如圖所示).現(xiàn)將石片扔向水面,假設(shè)石片第一次接觸水面的速率為100m/s,這是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率為上一次的90%,若要使石片的速率低于60m/s,則至少還需要“打水漂”的次數(shù)為()(參考數(shù)據(jù):取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.79.當時,的最大值為()A. B.C. D.10.若角,均為銳角,,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)在上單調(diào)遞減,則實數(shù)a的取值范圍為___________.12.設(shè)函數(shù)則的值為________13.在單位圓中,已知角的終邊與單位圓的交點為,則______14.在ABC中,H為BC上異于B,C的任一點,M為AH的中點,若,則λ+μ=_________15.若,則_________.16.若函數(shù)是奇函數(shù),則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象恒過定點A,且點A又在函數(shù)的圖象上.(1)求實數(shù)a的值;(2)若函數(shù)有兩個零點,求實數(shù)b的取值范圍.18.(1)求值:;(2)已知,,試用表示.19.已知函數(shù)(為常數(shù))是定義在上的奇函數(shù).(1)求函數(shù)的解析式;(2)判斷函數(shù)的單調(diào)性,并用定義證明;(3)若函數(shù)滿足,求實數(shù)的取值范圍.20.已知函數(shù)(a>0且)是偶函數(shù),函數(shù)(a>0且)(1)求b的值;(2)若函數(shù)有零點,求a的取值范圍;(3)當a=2時,若,使得恒成立,求實數(shù)m的取值范圍21.已知函數(shù)的一系列對應值如下表:(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當時,方程恰有兩個不同的解,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分別求兩個命題下的集合,再根據(jù)集合關(guān)系判斷選項.【詳解】,則,,則,因為,所以是充分必要條件.故選:C2、D【解析】根據(jù)圖象得到函數(shù)解析式,將函數(shù)的圖象向左平移個單位長度后得到的圖象,可得解析式,分別根據(jù)正弦函數(shù)的奇偶性、單調(diào)性、周期性與對稱性,對選項中的結(jié)論判斷,從而可得結(jié)論.【詳解】由圖象可知,,∴,則.將點的坐標代入中,整理得,∴,即;,∴,∴.∵將函數(shù)的圖象向左平移個單位長度后得到的圖象,∴.,∴既不是奇函數(shù)也不是偶函數(shù),故A錯誤;∴的最小正周期,故B不正確.令,解得,則函數(shù)圖像的對稱軸為直線.故C錯誤;由,可得,∴函數(shù)的單調(diào)遞增區(qū)間為.故D正確;故選:D.【點睛】關(guān)鍵點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),熟記正弦函數(shù)的奇偶性、單調(diào)區(qū)間、最小正周期與對稱軸是解決本題的關(guān)鍵.3、A【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的圖像比較大小即可.【詳解】令,則,,,由圖可知.4、A【解析】根據(jù)含有一個量詞命題否定的定義,即可得答案.【詳解】命題p:?n∈N,2n>2021的否定?p為:?n∈N,故選:A5、A【解析】由三視圖可知幾何體是一個底面為梯形的棱柱,再求幾何體的表面積得解.【詳解】由三視圖可知幾何體是一個底面為直角梯形的棱柱,梯形的上底為1,下底為2,高為2,棱柱的高為2.由題可計算得梯形的另外一個腰長為.所以該幾何體的表面積=.故答案為A【點睛】本題主要考查三視圖找原圖,考查幾何體的表面積的計算,意在考查學生對這些知識的掌握水平和空間想象分析推理能力.6、A【解析】由已知、同角三角函數(shù)關(guān)系、輔助角公式及誘導公式可得解.【詳解】由得,∴.故選:A.7、C【解析】由,即,分別作出函數(shù)和的圖象如圖,由圖象可知表示過定點的直線,當過時,此時兩個函數(shù)有兩個交點,當過時,此時兩個函數(shù)有一個交點,所以當時,兩個函數(shù)有兩個交點,所以在內(nèi)有且僅有兩個不同的零點,實數(shù)的取值范圍是,故選C.8、C【解析】設(shè)石片第n次“打水漂”時的速率為vn,再根據(jù)題設(shè)列不等式求解即可.【詳解】設(shè)石片第n次“打水漂”時的速率為vn,則vn=.由,得,則,所以,故,又,所以至少需要“打水漂”的次數(shù)為6.故選:C9、B【解析】利用基本不等式直接求解.【詳解】,,又,當且僅當,即時等號成立,所以的最大值為故選:B10、B【解析】根據(jù)給定條件,利用同角公式及差角的正弦公式計算作答.【詳解】角,均為銳角,即,而,則,又,則,所以,.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用復合函數(shù)的單調(diào)性,即可得到答案;【詳解】在定義域內(nèi)始終單調(diào)遞減,原函數(shù)要單調(diào)遞減時,,,,故答案為:12、【解析】直接利用分段函數(shù)解析式,先求出的值,從而可得的值.【詳解】因為函數(shù),所以,則,故答案為.【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)解不等式,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.13、【解析】先由三角函數(shù)定義得,再由正切的兩角差公式計算即可.【詳解】由三角函數(shù)的定義有,而.故答案為:14、##0.5【解析】根據(jù)題意,用表示出與,求出λ、μ的值即可【詳解】設(shè),則=(1﹣k)+k=,∴故答案為:15、##【解析】依題意利用誘導公式及二倍角公式計算可得;【詳解】解:因為,所以.故答案為:.16、【解析】根據(jù)題意,得到,即可求解.【詳解】因為是奇函數(shù),可得.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由函數(shù)圖象的平移變換可得點A坐標,然后代入函數(shù)可解;(2)將函數(shù)零點個數(shù)問題轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù)問題,作圖可解.【小問1詳解】函數(shù)的圖象可由指數(shù)函數(shù)的圖象,向右平移2個單位長度,再向上平移1個單位長度得到.因為函數(shù)的圖象過定點,故函數(shù)的圖象恒過定點,又因為A點在圖象上,則∴解得【小問2詳解】,若函數(shù)有兩個零點,則方程有兩個不等實根,令,,則它們的函數(shù)圖象有兩個交點,由圖可知:,故b的取值范圍為.18、(1)(2)【解析】(1)先將小數(shù)轉(zhuǎn)化為分數(shù)并約簡,然后各式化成指數(shù)冪的形式,再利用指數(shù)運算法則即可化簡求值.(2)先利用對數(shù)的換底公式,以及相關(guān)的運算公式將轉(zhuǎn)化為以表示的式子,然后換成m,n即可.【詳解】解:(1)原式(2)原式【點睛】主要考查指數(shù)冪運算公式以及對數(shù)的運算公式的應用,屬于基礎(chǔ)題.19、(1)(2)在上單調(diào)遞減,證明見解析(3)【解析】(1)依題意可得,即可得到方程,解得即可;(2)首先判斷函數(shù)的單調(diào)性,再根據(jù)定義法證明,按照設(shè)元、作差、變形、判斷符號、下結(jié)論的步驟完成即可;(3)根據(jù)函數(shù)的奇偶性與單調(diào)性將函數(shù)不等式轉(zhuǎn)化為自變量的不等式,再解得即可;【小問1詳解】解:因為是定義在上的奇函數(shù),所以,即,即,所以,即;解得,所以【小問2詳解】解:函數(shù)是上的減函數(shù)證明:在上任取,,設(shè),因為,所以,則,所以即所以在上單調(diào)遞減【小問3詳解】解:因為是定義在上奇函數(shù)所以可化為又在上單調(diào)遞減,所以解得20、(1)(2)(3)【解析】(1)根據(jù)f(x)為偶函數(shù),由f(-x)=-f(x),即對恒成立求解;(2)由有零點,轉(zhuǎn)化為有解,令,轉(zhuǎn)化為函數(shù)y=p(x)圖象與直線y=a有交點求解;(3)根據(jù),使得成立,由求解.【小問1詳解】解:因f(x)為偶函數(shù),所以,都有f(-x)=-f(x),即對恒成立,對恒成立,對恒成立,所以【小問2詳解】因為有零點即有解,即有解令,則函數(shù)y=p(x)圖象與直線y=a有交點,當0<a<1時,無解;當a>1時,在上單調(diào)遞減,且,所以在上單調(diào)遞減,值域為由有解,可得a>0,此時a>1,綜上可知,a的取值范圍是;【小問3詳解】,當時,,由(2)知,當且僅當時取等號,所以的最小值為1,因為,使得成立,所有,即對任意的恒成立,設(shè),所以當t>1時,恒成立,即,對t>1恒成立,設(shè)函數(shù)在單調(diào)遞減,所以,所以m≥0,即實數(shù)m的取值范圍為21、(1)(2)【解析】(1)根據(jù)表格提供的數(shù)據(jù)畫出函數(shù)圖象,求出、和、的值,寫出的解析式即可;(2)由函數(shù)的最小正周期求出的值,再利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專項幕墻安裝2024協(xié)議范本版
- 組織行為分析與應用
- 專業(yè)舞臺燈光購銷協(xié)議一
- 專業(yè)維修服務(wù)協(xié)議樣本2024版B版
- 2025年度場監(jiān)督管理局委托執(zhí)法事項責任書4篇
- 2025年度廠房設(shè)備租賃及維護管理合同范本4篇
- 2024版小區(qū)公共服務(wù)設(shè)施施工協(xié)議樣本一
- 2024版特定企業(yè)融資咨詢與服務(wù)協(xié)議版
- 2025年度戶外廣告場地租賃終止協(xié)議書4篇
- 專用肥料國內(nèi)運輸合同標準文本2024版版
- 2024年08月云南省農(nóng)村信用社秋季校園招考750名工作人員筆試歷年參考題庫附帶答案詳解
- 防詐騙安全知識培訓課件
- 心肺復蘇課件2024
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2024-2025學年江蘇省南京市高二上冊期末數(shù)學檢測試卷(含解析)
- 四川省名校2025屆高三第二次模擬考試英語試卷含解析
- 《城鎮(zhèn)燃氣領(lǐng)域重大隱患判定指導手冊》專題培訓
- 湖南財政經(jīng)濟學院專升本管理學真題
- 考研有機化學重點
- 全國身份證前六位、區(qū)號、郵編-編碼大全
- 《GPU體系結(jié)構(gòu)》課件2
評論
0/150
提交評論