




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
NumericalDescriptiveMeasuresChapter3NumericalDescriptiveMeasuresInthischapter,youlearnto:
Describethepropertiesofcentraltendency,variation,andshapeinnumericaldataConstructandinterpretaboxplotComputedescriptivesummarymeasuresforapopulationCalculatethecovarianceandthecoefficientofcorrelationObjectivesInthischapter,youlearnto:SummaryDefinitionsThecentraltendencyistheextenttowhichthevaluesofanumericalvariablegrouparoundatypicalorcentralvalue.Thevariationistheamountofdispersionorscatteringawayfromacentralvaluethatthevaluesofanumericalvariableshow.Theshapeisthepatternofthedistributionofvaluesfromthelowestvaluetothehighestvalue.DCOVASummaryDefinitionsThecentralMeasuresofCentralTendency:
TheMeanThearithmeticmean(oftenjustcalledthe“mean”)isthemostcommonmeasureofcentraltendencyForasampleofsizen:SamplesizeObservedvaluesTheithvaluePronouncedx-barDCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
TheMean(con’t)ThemostcommonmeasureofcentraltendencyMean=sumofvaluesdividedbythenumberofvaluesAffectedbyextremevalues(outliers)11121314151617181920Mean=1311121314151617181920Mean=14DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
TheMedianInanorderedarray,themedianisthe“middle”number(50%above,50%below)
LesssensitivethanthemeantoextremevaluesMedian=13Median=131112131415161718192011121314151617181920DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
LocatingtheMedianThelocationofthemedianwhenthevaluesareinnumericalorder(smallesttolargest):Ifthenumberofvaluesisodd,themedianisthemiddlenumberIfthenumberofvaluesiseven,themedianistheaverageofthetwomiddlenumbers Notethatisnotthevalueofthemedian,onlythepositionofthemedianintherankeddataDCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
TheModeValuethatoccursmostoftenNotaffectedbyextremevaluesUsedforeithernumericalorcategoricaldataTheremaybenomodeTheremaybeseveralmodes01234567891011121314
Mode=90123456NoModeDCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
ReviewExampleHousePrices:
$2,000,000$500,000
$300,000
$100,000
$100,000Sum$3,000,000Mean:($3,000,000/5) =$600,000Median:middlevalueofrankeddata
=$300,000Mode:mostfrequentvalue
=$100,000DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
WhichMeasuretoChoose?Themeanisgenerallyused,unlessextremevalues(outliers)exist.Themedianisoftenused,sincethemedianisnotsensitivetoextremevalues.Forexample,medianhomepricesmaybereportedforaregion;itislesssensitivetooutliers.Insomesituationsitmakessensetoreportboththemeanandthemedian.DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
SummaryCentralTendencyArithmeticMeanMedianModeMiddlevalueintheorderedarrayMostfrequentlyobservedvalueDCOVAMeasuresofCentralTendency:
Samecenter,differentvariationMeasuresofVariationMeasuresofvariationgiveinformationonthespreadorvariabilityordispersionofthedatavalues.
VariationStandardDeviationCoefficientofVariationRangeVarianceDCOVASamecenter,MeasuresofVariaMeasuresofVariation:
TheRangeSimplestmeasureofvariationDifferencebetweenthelargestandthesmallestvalues:Range=Xlargest–Xsmallest01234567891011121314Range=13-1=12Example:DCOVAMeasuresofVariation:
TheRanMeasuresofVariation:
WhyTheRangeCanBeMisleadingDoesnotaccountforhowthedataaredistributedSensitivetooutliers789101112Range=12-7=5789101112Range=12-7=5
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120Range=5-1=4Range=120-1=119DCOVAMeasuresofVariation:
WhyTheAverage(approximately)ofsquareddeviationsofvaluesfromthemeanSample
variance:MeasuresofVariation:
TheSampleVarianceWhere
=arithmeticmeann=samplesizeXi=ithvalueofthevariableXDCOVAAverage(approximately)ofsquMostcommonlyusedmeasureofvariationShowsvariationaboutthemeanIsthesquarerootofthevarianceHasthesameunitsastheoriginaldataSample
standarddeviation:MeasuresofVariation:
TheSampleStandardDeviationDCOVAMostcommonlyusedmeasureofMeasuresofVariation:
TheStandardDeviationStepsforComputingStandardDeviation1. Computethedifferencebetweeneachvalueandthemean.2. Squareeachdifference.3. Addthesquareddifferences.4. Dividethistotalbyn-1togetthesamplevariance.5. Takethesquarerootofthesamplevariancetogetthesamplestandarddeviation.DCOVAMeasuresofVariation:
TheStaMeasuresofVariation:
SampleStandardDeviation:
CalculationExampleSample
Data(Xi):1012141517181824n=8Mean=X=16Ameasureofthe“average”scatteraroundthemeanDCOVAMeasuresofVariation:
SampleMeasuresofVariation:
ComparingStandardDeviationsMean=15.5S=3.338
11121314151617181920211112131415161718192021DataBDataAMean=15.5S=0.9261112131415161718192021Mean=15.5S=4.567DataCDCOVAMeasuresofVariation:
CompariMeasuresofVariation:
ComparingStandardDeviationsSmallerstandarddeviationLargerstandarddeviationDCOVAMeasuresofVariation:
CompariMeasuresofVariation:
SummaryCharacteristicsThemorethedataarespreadout,thegreatertherange,variance,andstandarddeviation.Themorethedataareconcentrated,thesmallertherange,variance,andstandarddeviation.Ifthevaluesareallthesame(novariation),allthesemeasureswillbezero.Noneofthesemeasuresareevernegative.DCOVAMeasuresofVariation:
SummaryMeasuresofVariation:
TheCoefficientofVariationMeasuresrelativevariationAlwaysinpercentage(%)ShowsvariationrelativetomeanCanbeusedtocomparethevariabilityoftwoormoresetsofdatameasuredindifferentunitsDCOVAMeasuresofVariation:
TheCoeMeasuresofVariation:
ComparingCoefficientsofVariationStockA:Averagepricelastyear=$50Standarddeviation=$5StockB:Averagepricelastyear=$100Standarddeviation=$5Bothstockshavethesamestandarddeviation,butstockBislessvariablerelativetoitspriceDCOVAMeasuresofVariation:
CompariMeasuresofVariation:
ComparingCoefficientsofVariation(con’t)StockA:Averagepricelastyear=$50Standarddeviation=$5StockC:Averagepricelastyear=$8Standarddeviation=$2StockChasamuchsmallerstandarddeviationbutamuchhighercoefficientofvariationDCOVAMeasuresofVariation:
CompariLocatingExtremeOutliers:
Z-ScoreTocomputetheZ-scoreofadatavalue,subtractthemeananddividebythestandarddeviation.TheZ-scoreisthenumberofstandarddeviationsadatavalueisfromthemean.AdatavalueisconsideredanextremeoutlierifitsZ-scoreislessthan-3.0orgreaterthan+3.0.ThelargertheabsolutevalueoftheZ-score,thefartherthedatavalueisfromthemean.DCOVALocatingExtremeOutliers:
Z-SLocatingExtremeOutliers:
Z-ScorewhereXrepresentsthedatavalue Xisthesamplemean SisthesamplestandarddeviationDCOVALocatingExtremeOutliers:
Z-SLocatingExtremeOutliers:
Z-ScoreSupposethemeanmathSATscoreis490,withastandarddeviationof100.ComputetheZ-scoreforatestscoreof620.Ascoreof620is1.3standarddeviationsabovethemeanandwouldnotbeconsideredanoutlier.DCOVALocatingExtremeOutliers:
Z-SShapeofaDistributionDescribeshowdataaredistributedTwousefulshaperelatedstatisticsare:SkewnessMeasurestheextenttowhichdatavaluesarenotsymmetricalKurtosisKurtosisaffectsthepeakednessofthecurveofthedistribution—thatis,howsharplythecurverisesapproachingthecenterofthedistributionDCOVAShapeofaDistributionDescribShapeofaDistribution(Skewness)MeasurestheextenttowhichdataisnotsymmetricalMean=Median
Mean<Median
Median<MeanRight-SkewedLeft-SkewedSymmetricDCOVASkewnessStatistic<0 0 >0ShapeofaDistribution(SkewnShapeofaDistribution--Kurtosismeasureshowsharplythecurverisesapproachingthecenterofthedistribution
SharperPeakThanBell-Shaped(Kurtosis>0)FlatterThanBell-Shaped(Kurtosis<0)Bell-Shaped(Kurtosis=0)DCOVAShapeofaDistribution--KGeneralDescriptiveStatsUsingMicrosoftExcelFunctionsDCOVAGeneralDescriptiveStatsUsinGeneralDescriptiveStatsUsingMicrosoftExcelDataAnalysisToolSelectData.SelectDataAnalysis.SelectDescriptiveStatisticsandclickOK.DCOVAGeneralDescriptiveStatsUsinGeneralDescriptiveStatsUsingMicrosoftExcel4.Enterthecellrange.5.ChecktheSummaryStatisticsbox.6.ClickOKDCOVAGeneralDescriptiveStatsUsinExceloutputMicrosoftExceldescriptivestatisticsoutput,usingthehousepricedata:HousePrices:
$2,000,000500,000
300,000
100,000
100,000DCOVAExceloutputMicrosoftExcelHoMinitabOutputMinitabdescriptivestatisticsoutputusingthehousepricedata:HousePrices:
$2,000,000500,000
300,000
100,000
100,000DCOVADescriptiveStatistics:HousePriceTotalVariableCountMeanSEMeanStDevVarianceSumMinimumHousePrice56000003577718000006.40000E+113000000100000 NforVariableMedianMaximumRangeModeMode SkewnessKurtosisHousePrice300000200000019000001000002 2.014.13MinitabOutputMinitabdescriptQuartileMeasuresQuartilessplittherankeddatainto4segmentswithanequalnumberofvaluespersegment25%Thefirstquartile,Q1,isthevalueforwhich25%oftheobservationsaresmallerand75%arelargerQ2isthesameasthemedian(50%oftheobservationsaresmallerand50%arelarger)Only25%oftheobservationsaregreaterthanthethirdquartileQ1Q2Q325%25%25%DCOVAQuartileMeasuresQuartilessplQuartileMeasures:
LocatingQuartilesFindaquartilebydeterminingthevalueintheappropriatepositionintherankeddata,whereFirstquartileposition:
Q1=(n+1)/4rankedvalue
Secondquartileposition:
Q2=(n+1)/2
rankedvalue
Thirdquartileposition:
Q3=3(n+1)/4rankedvalue
where
n
isthenumberofobservedvaluesDCOVAQuartileMeasures:
LocatingQuQuartileMeasures:
CalculationRulesWhencalculatingtherankedpositionusethefollowingrulesIftheresultisawholenumberthenitistherankedpositiontouseIftheresultisafractionalhalf(e.g.2.5,7.5,8.5,etc.)thenaveragethetwocorrespondingdatavalues.Iftheresultisnotawholenumberorafractionalhalfthenroundtheresulttothenearestintegertofindtherankedposition.DCOVAQuartileMeasures:
Calculation(n=9)Q1isinthe
(9+1)/4=2.5positionoftherankeddata
sousethevaluehalfwaybetweenthe2ndand3rdvalues,
soQ1=12.5QuartileMeasures:
LocatingQuartilesSampleDatainOrderedArray:111213161617182122
Q1andQ3aremeasuresofnon-centrallocationQ2=median,isameasureofcentraltendencyDCOVA(n=9)QuartileMeasures:
(n=9)Q1isinthe
(9+1)/4=2.5positionoftherankeddata,
soQ1=(12+13)/2=12.5Q2isinthe
(9+1)/2=5thpositionoftherankeddata,
soQ2=median=16Q3isinthe
3(9+1)/4=7.5positionoftherankeddata,
soQ3=(18+21)/2=19.5QuartileMeasures
CalculatingTheQuartiles:ExampleSampleDatainOrderedArray:111213161617182122
Q1andQ3aremeasuresofnon-centrallocationQ2=median,isameasureofcentraltendencyDCOVA(n=9)QuartileMeasures
CQuartileMeasures:
TheInterquartileRange(IQR)TheIQRisQ3–Q1andmeasuresthespreadinthemiddle50%ofthedataTheIQRisalsocalledthemidspreadbecauseitcoversthemiddle50%ofthedataTheIQRisameasureofvariabilitythatisnotinfluencedbyoutliersorextremevaluesMeasureslikeQ1,Q3,andIQRthatarenotinfluencedbyoutliersarecalledresistantmeasuresDCOVAQuartileMeasures:
TheInterquCalculatingTheInterquartileRangeMedian(Q2)XmaximumXminimumQ1Q3Example:25%25%25%25%1230455770Interquartilerange=57–30=27DCOVACalculatingTheInterquartileTheFiveNumberSummaryThefivenumbersthathelpdescribethecenter,spreadandshapeofdataare:XsmallestFirstQuartile(Q1)Median(Q2)ThirdQuartile(Q3)XlargestDCOVATheFiveNumberSummaryThefivRelationshipsamongthefive-numbersummaryanddistributionshapeLeft-SkewedSymmetricRight-SkewedMedian–Xsmallest>Xlargest–MedianMedian–Xsmallest≈Xlargest–MedianMedian–Xsmallest<Xlargest–MedianQ1–Xsmallest>Xlargest–Q3Q1–Xsmallest≈Xlargest–Q3Q1–Xsmallest<Xlargest–Q3Median–Q1>Q3–MedianMedian–Q1≈Q3–MedianMedian–Q1<Q3–MedianDCOVARelationshipsamongthefive-nFiveNumberSummaryand
TheBoxplotTheBoxplot:AGraphicaldisplayofthedatabasedonthefive-numbersummary:Example:Xsmallest
--Q1
--Median--Q3
--Xlargest25%ofdata25%25%25%ofdata ofdataofdata Xsmallest Q1 MedianQ3 XlargestDCOVAFiveNumberSummaryand
TheBoFiveNumberSummary:
ShapeofBoxplotsIfdataaresymmetricaroundthemedianthentheboxandcentrallinearecenteredbetweentheendpointsABoxplotcanbeshownineitheraverticalorhorizontalorientationXsmallestQ1MedianQ3XlargestDCOVAFiveNumberSummary:
ShapeofDistributionShapeand
TheBoxplotRight-SkewedLeft-SkewedSymmetricQ1Q2Q3Q1Q2Q3Q1Q2Q3DCOVADistributionShapeand
TheBoBoxplotExampleBelowisaBoxplotforthefollowingdata:
022233455927Thedataarerightskewed,astheplotdepicts023527XsmallestQ1Q2/MedianQ3XlargestDCOVABoxplotExampleBelowisaBoxpNumericalDescriptiveMeasuresforaPopulationDescriptivestatisticsdiscussedpreviouslydescribedasample,notthepopulation.Summarymeasuresdescribingapopulation,calledparameters,aredenotedwithGreekletters.Importantpopulationparametersarethepopulationmean,variance,andstandarddeviation.DCOVANumericalDescriptiveMeasuresNumericalDescriptiveMeasures
foraPopulation:ThemeanμThepopulationmeanisthesumofthevaluesinthepopulationdividedbythepopulationsize,Nμ=populationmeanN=populationsizeXi=ithvalueofthevariableXWhere
DCOVANumericalDescriptiveMeasuresAverageofsquareddeviationsofvaluesfromthemeanPopulation
variance:NumericalDescriptiveMeasuresForAPopulation:TheVarianceσ2Where
μ=populationmeanN=populationsizeXi=ithvalueofthevariableXDCOVAAverageofsquareddeviationsNumericalDescriptiveMeasuresForAPopulation:TheStandardDeviationσMostcommonlyusedmeasureofvariationShowsvariationaboutthemeanIsthesquarerootofthepopulationvarianceHasthesameunitsastheoriginaldataPopulation
standarddeviation:DCOVANumericalDescriptiveMeasuresSamplestatisticsversuspopulationparametersMeasurePopulationParameterSampleStatisticMeanVarianceStandardDeviationDCOVASamplestatisticsversuspopulTheempiricalruleapproximatesthevariationofdatainabell-shapeddistributionApproximately68%ofthedatainabellshapeddistributioniswithin1standarddeviationofthemeanorTheEmpiricalRule68%DCOVATheempiricalruleapproximateApproximately95%ofthedatainabell-shapeddistributionlieswithintwostandarddeviationsofthemean,orμ±2σApproximately99.7%ofthedatainabell-shapeddistributionlieswithinthreestandarddeviationsofthemean,orμ±3σTheEmpiricalRule99.7%95%DCOVAApproximately95%ofthedataUsingtheEmpiricalRuleSupposethatthevariableMathSATscoresisbell-shapedwithameanof500andastandarddeviationof90.Then,Approximately68%ofalltesttakersscoredbetween410and590,(500±90).Approximately95%ofalltesttakersscoredbetween320and680,(500±180).Approximately99.7%ofalltesttakersscoredbetween230and770,(500±270).DCOVAUsingtheEmpiricalRuleSupposRegardlessofhowthedataaredistributed,atleast(1-1/k2)x100%ofthevalueswillfallwithinkstandarddeviationsofthemean(fork>1)
Examples:
(1-1/22)x100%=75%…..............k=2(μ±2σ) (1-1/32)x100%=88.89%………..k=3(μ±3σ)ChebyshevRuleWithinAtleastDCOVARegardlessofhowthedataareWeDiscussTwoMeasuresOfTheRelationshipBetweenTwoNumericalVariablesScatterplotsallowyoutovisuallyexaminetherelationshipbetweentwonumericalvariablesandnowwewilldiscusstwoquantitativemeasuresofsuchrelationships.TheCovarianceTheCoefficientofCorrelationWeDiscussTwoMeasuresOfTheTheCovarianceThecovariancemeasuresthestrengthofthelinearrelationshipbetweentwonumericalvariables(X&Y)Thesamplecovariance:OnlyconcernedwiththestrengthoftherelationshipNocausaleffectisimpliedDCOVATheCovarianceThecovariancemCovariancebetweentwovariables:cov(X,Y)>0XandYtendtomoveinthesamedirectioncov(X,Y)<0XandYtendtomoveinoppositedirectionscov(X,Y)=0XandYareindependentThecovariancehasamajorflaw:ItisnotpossibletodeterminetherelativestrengthoftherelationshipfromthesizeofthecovarianceInterpretingCovarianceDCOVACovariancebetweentwovariablCoefficientofCorrelationMeasurestherelativestrengthofthelinearrelationshipbetweentwonumericalvariablesSamplecoefficientofcorrelation:
whereDCOVACoefficientofCorrelationMeasFeaturesofthe
CoefficientofCorrelationThepopulationcoefficientofcorrelationisreferredasρ.Thesamplecoefficientofcorrelationisreferredtoasr.Eitherρorrhavethefollowingfeatures:UnitfreeRangebetween–1and1Thecloserto–1,thestrongerthenegativelinearrelationshipThecloserto1,thestrongerthepositivelinearrelationshipThecloserto0,theweakerthelinearrelationshipDCOVAFeaturesofthe
CoefficientofScatterPlotsofSampleDatawithVariousCoefficientsofCorrelationYXYXYXYXr=-1r=-.6r=+.3r=+1YXr=0DCOVAScatterPlotsofSampleDataTheCoefficientofCorrelationUsingMicrosoftExcelFunctionDCOVATheCoefficientofCorrelationTheCoefficientofCorrelationUsingMicrosoftExcelDataAnalysisToolSelectDataChooseDataAnalysisChooseCorrelation&ClickOKDCOVATheCoefficientofCorrelationTheCoefficientofCorrelation
UsingMicrosoftExcelInputdatarangeandselectappropriateoptionsClickOKtogetoutputDCOVATheCoefficientofCorrelationInterpretingtheCoefficientofCorrelation
UsingMicrosoftExcelr=.733Thereisarelativelystrongpositivelinearrelationshipbetweentestscore#1andtestscore#2.Studentswhoscoredhighonthefirsttesttendedtoscorehighonsecondtest.DCOVAInterpretingtheCoefficientoPitfallsinNumerical
DescriptiveMeasuresDataanalysisisobjectiveShouldreportthesummarymeasuresthatbestdescribeandcommunicatetheimportantaspectsofthedatasetDatainterpretationissubjectiveShouldbedoneinfair,neutralandclearmannerDCOVAPitfallsinNumerical
DescripEthicalConsiderationsNumericaldescriptivemeasures:ShoulddocumentbothgoodandbadresultsShouldbepresentedinafair,objectiveandneutralmannerShouldnotuseinappropriatesummarymeasurestodistortfactsDCOVAEthicalConsiderationsNumericaInthischapterwehavediscussed:
Describingthepropertiesofcentraltendency,variation,andshapeinnumericaldataConstructingandinterpretingaboxplotComputingdescriptivesummarymeasuresforapopulationCalculatingthecovarianceandthecoefficientofcorrelationChapterSummaryInthischapterwehavediscusNumericalDescriptiveMeasuresChapter3NumericalDescriptiveMeasuresInthischapter,youlearnto:
Describethepropertiesofcentraltendency,variation,andshapeinnumericaldataConstructandinterpretaboxplotComputedescriptivesummarymeasuresforapopulationCalculatethecovarianceandthecoefficientofcorrelationObjectivesInthischapter,youlearnto:SummaryDefinitionsThecentraltendencyistheextenttowhichthevaluesofanumericalvariablegrouparoundatypicalorcentralvalue.Thevariationistheamountofdispersionorscatteringawayfromacentralvaluethatthevaluesofanumericalvariableshow.Theshapeisthepatternofthedistributionofvaluesfromthelowestvaluetothehighestvalue.DCOVASummaryDefinitionsThecentralMeasuresofCentralTendency:
TheMeanThearithmeticmean(oftenjustcalledthe“mean”)isthemostcommonmeasureofcentraltendencyForasampleofsizen:SamplesizeObservedvaluesTheithvaluePronouncedx-barDCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
TheMean(con’t)ThemostcommonmeasureofcentraltendencyMean=sumofvaluesdividedbythenumberofvaluesAffectedbyextremevalues(outliers)11121314151617181920Mean=1311121314151617181920Mean=14DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
TheMedianInanorderedarray,themedianisthe“middle”number(50%above,50%below)
LesssensitivethanthemeantoextremevaluesMedian=13Median=131112131415161718192011121314151617181920DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
LocatingtheMedianThelocationofthemedianwhenthevaluesareinnumericalorder(smallesttolargest):Ifthenumberofvaluesisodd,themedianisthemiddlenumberIfthenumberofvaluesiseven,themedianistheaverageofthetwomiddlenumbers Notethatisnotthevalueofthemedian,onlythepositionofthemedianintherankeddataDCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
TheModeValuethatoccursmostoftenNotaffectedbyextremevaluesUsedforeithernumericalorcategoricaldataTheremaybenomodeTheremaybeseveralmodes01234567891011121314
Mode=90123456NoModeDCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
ReviewExampleHousePrices:
$2,000,000$500,000
$300,000
$100,000
$100,000Sum$3,000,000Mean:($3,000,000/5) =$600,000Median:middlevalueofrankeddata
=$300,000Mode:mostfrequentvalue
=$100,000DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
WhichMeasuretoChoose?Themeanisgenerallyused,unlessextremevalues(outliers)exist.Themedianisoftenused,sincethemedianisnotsensitivetoextremevalues.Forexample,medianhomepricesmaybereportedforaregion;itislesssensitivetooutliers.Insomesituationsitmakessensetoreportboththemeanandthemedian.DCOVAMeasuresofCentralTendency:
MeasuresofCentralTendency:
SummaryCentralTendencyArithmeticMeanMedianModeMiddlevalueintheorderedarrayMostfrequentlyobservedvalueDCOVAMeasuresofCentralTendency:
Samecenter,differentvariationMeasuresofVariationMeasuresofvariationgiveinformationonthespreadorvariabilityordispersionofthedatavalues.
VariationStandardDeviationCoefficientofVariationRangeVarianceDCOVASamecenter,MeasuresofVariaMeasuresofVariation:
TheRangeSimplestmeasureofvariationDifferencebetweenthelargestandthesmallestvalues:Range=Xlargest–Xsmallest01234567891011121314Range=13-1=12Example:DCOVAMeasuresofVariation:
TheRanMeasuresofVariation:
WhyTheRangeCanBeMisleadingDoesnotaccountforhowthedataaredistributedSensitivetooutliers789101112Range=12-7=5789101112Range=12-7=5
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,5
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120Range=5-1=4Range=120-1=119DCOVAMeasuresofVariation:
WhyTheAverage(approximately)ofsquareddeviationsofvaluesfromthemeanSample
variance:MeasuresofVariation:
TheSampleVarianceWhere
=arithmeticmeann=samplesizeXi=ithvalueofthevariableXDCOVAAverage(approximately)ofsquMostcommonlyusedmeasureofvariationShowsvariationaboutthemeanIsthesquarerootofthevarianceHasthesameunitsastheoriginaldataSample
standarddeviation:MeasuresofVariation:
TheSampleStandardDeviationDCOVAMostcommonlyusedmeasureofMeasuresofVariation:
TheStandardDeviationStepsforComputingStandardDeviation1. Computethedifferencebetweeneachvalueandthemean.2. Squareeachdifference.3. Addthesquareddifferences.4. Dividethistotalbyn-1togetthesamplevariance.5. Takethesquarerootofthesamplevariancetogetthesamplestand
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 23698:2024 EN Cosmetics - Measurement of the sunscreen efficacy by diffuse reflectance spectroscopy
- 【正版授權(quán)】 ISO/IEC TR 24722:2024 EN Information technology - Biometrics - Multimodal and other multibiometric fusion
- 【正版授權(quán)】 ISO 16173:2025 EN Ships and marine technology - Jacking system appliances on self-elevating unit - Rack pinion leg fixation system
- 【正版授權(quán)】 ISO 1171:2024 EN Coal and coke - Determination of ash
- 2025年度玻璃隔斷安裝與品牌授權(quán)合同
- 2025年度金融科技企業(yè)員工試工合作協(xié)議
- 2025年度高速公路服務(wù)區(qū)草坪綠化與旅客服務(wù)合同
- 2025年度草種研發(fā)與市場(chǎng)推廣合作協(xié)議
- 2025年度社會(huì)組織勞動(dòng)合同范本解讀與應(yīng)用4篇
- 個(gè)人財(cái)務(wù)規(guī)劃的重要階段計(jì)劃
- 《婦幼保健學(xué)》課件-第一章 緒論
- 10S505 柔性接口給水管道支墩
- 移動(dòng)寬帶注銷(xiāo)委托書(shū)模板需要a4紙
- 初一下冊(cè)期末模擬物理質(zhì)量檢測(cè)試卷解析1
- 《教育向美而生-》讀書(shū)分享課件
- 中海地產(chǎn)總部-員工考核手冊(cè)
- 左卡尼汀在減輕高原反應(yīng)中的應(yīng)用
- 《烹飪美學(xué)》課件-項(xiàng)目二 烹飪色彩
- 青海省西寧市選調(diào)生考試(行政職業(yè)能力測(cè)驗(yàn))綜合能力測(cè)試題匯編
- 2024年上海民航職業(yè)技術(shù)學(xué)院高職單招歷年職業(yè)技能測(cè)驗(yàn)高頻考點(diǎn)試題含答案解析
- 夏枯草口服液相關(guān)項(xiàng)目實(shí)施方案
評(píng)論
0/150
提交評(píng)論