![專題04半角模型鞏固練習(提優(yōu))-沖刺2020年中考幾何專項復習(解析版)_第1頁](http://file4.renrendoc.com/view/051fbc720070a0b89be37579d2a012b6/051fbc720070a0b89be37579d2a012b61.gif)
![專題04半角模型鞏固練習(提優(yōu))-沖刺2020年中考幾何專項復習(解析版)_第2頁](http://file4.renrendoc.com/view/051fbc720070a0b89be37579d2a012b6/051fbc720070a0b89be37579d2a012b62.gif)
![專題04半角模型鞏固練習(提優(yōu))-沖刺2020年中考幾何專項復習(解析版)_第3頁](http://file4.renrendoc.com/view/051fbc720070a0b89be37579d2a012b6/051fbc720070a0b89be37579d2a012b63.gif)
![專題04半角模型鞏固練習(提優(yōu))-沖刺2020年中考幾何專項復習(解析版)_第4頁](http://file4.renrendoc.com/view/051fbc720070a0b89be37579d2a012b6/051fbc720070a0b89be37579d2a012b64.gif)
![專題04半角模型鞏固練習(提優(yōu))-沖刺2020年中考幾何專項復習(解析版)_第5頁](http://file4.renrendoc.com/view/051fbc720070a0b89be37579d2a012b6/051fbc720070a0b89be37579d2a012b65.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
半角模型鞏固練習(提優(yōu))如圖,在四邊形ABCD中,/B+/D=180o,AB=AD,E、F分別是線段BC、CD上的點,且BE+FD=EF,求證:/EAF=^/BAD.【解答】見解析【解析】證明:將^ADF繞點A順時針旋轉/DAB的度數(shù)得到△ABG,AD旋轉到AB,AF旋轉到AG,如圖:BE C.?旋轉,AG=AF,BG=DF,/ABG=/D,/BAG=/DAF,/B+/D=180o,.B+/ABG=180o,「?點G、B、C三點共線,???BE+FD=EF,BE+BG=GE=EF,在^AEG與^AEF中,(AG=AF<AE=AE,/./\AEG=^AEF,..ZEAG=ZEAF,EG=EF_ _ _ I_又「/BAG=/DAF, /EAB+/DAF=/EAF,「./EAF=可/BAD.已知,在正方形ABCD中,/MAN=45o,ZMAN繞點A順時針旋轉,它的兩邊分別交 CB、DC(或它們的延長線)于點M、N,當/MAN繞點A旋轉到BM=DN時(如圖1),易證BM+DN=MN.(1)當/MAN繞點A旋轉到BMWDN時(如圖2),線段BM、DN、和MN之間有怎樣的數(shù)量關系?猜想一下,并加以證明;
(2)當/MAN繞點A旋轉到如圖(2)當/MAN繞點A旋轉到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.A D【解答】(1)猜想:BM+DN=MN;(2)猜想:DN—BM=MN【解析】(1)猜想:BM+DN=MN.證明:如圖,將^AND繞點A順時針旋轉900,得到^ABE,則E、B、M共線,A De/EAM=900—/NAM=900-45o=45o,?.?/NAM=45o,在4AEM與△ANM中,AE=AN/七AM=乙NAM,二△AM/芻浦(S』S),ME=MN,AM=AM???ME=BE+BM=DN+BM,,DN+BM=MN;(2)猜想:DN—BM=MN.證明:在線段DN上截取DQ=BM,如圖所示.
AD=AB在^ADQ與^ABM中,/J^ADQ= ^ADQ ABM(SAS),*DQ=BM??./DAQ=/BAM,.?./QAN=/MAN,'AQ=AM在AAMN與^AQN中,:《^QAN=AMANAXAMTAAC^iSAS),AN=AN.?.MN=QN,DN-BM=MN.3.已知在^ABC中,/ACB=90。CA=CB=6<2,CD_LAB于D,點E在直線CD上,DE= ,點F在線段AB上,M是DB的中點,直線AE與直線CF交于N點.(1)如圖1,若點E在線段CD上,請分別寫出線段AE和CM之間的位置關系和數(shù)量關系:,(2)在(1)的條件下,當點F在線段AD上,且AF=2FD時,求證:/CNE=450;(3)當點E在線段CD的延長線上時,在線段AB上是否存在點F,使得NCNE=450若存在,請直接寫出AF的長度;若不存在,請說明理由.【解答】(1)AE±CM,AE=CM;(2)見解析;(3)AF=8.
【解析】(1)AE±CM,AE=CM.如圖,延長AE交CM于點H../ACB=90o,CA=CB=6v^,CDXAB于點D,/CAB=/CBA=/ACD=/BCD=45o,AD=BD=CD=[AB,?.M是DB的中點,,;-<■=—r? =「「.{AC=CBZ/1C7?=Z/? △AEC@'CMN(SRS),CE=BMAE=CM,/CAE=/BCM,???/ACM+/BCM=90o,/ACM+/CAE=900,/ACH=90o,AH±CM,AE±CM,AE=CM;(2)如圖,過點A作AG,AB,且AG=BM,,連接CG、FG,延長AE交CM于H.CAB=900,CA=CB= ,.?.ZCAB=ZCBA=45°,>+CT??=12,../GAC=/MBC=45°,?.CDXAB,CD=AD=BD=??M是DB的中點,..BM=DM=3,,AG=3,??AF=2FD,AF=4,DF=2,.1.FM=FD+DM=2+3=5,.AGXAF,/.PT;=y/AC;-+AK'2=5,,F(xiàn)G=FM,'AC=CB在^CAG和^CBM中,4= 二△cnw,AG=BMCG=CM,/ACG=/BCM,/MCG=/ACM=/ACG=/ACM+/BCM=90q在△FCGFCG和^FCMFCM中,"CG=CM<產G=EW△kC。三△產CTLF,?./FCG=/FCM,?./FCH=45o,CF=CF由(1)知AE±CM,CHN=90o,「./CNE=45o;(3)存在,如圖作BH±CN.由條件可得/CHB=90o,?.CDXAB,ZADE=90o,ZCHB=ZADE,??/ACB=90CA=CB=6v2,..ZCAB=ZCBA=45°AB=,CA+CB2=12,??/GAC=/MBC=45q1 1?CDLAB,CD=AD=BD=2AB=6,-.DE=-CDQE=3.在RtAADE中,由勾股定理可得AE=3/,?./CNE=45o, CBA=ZCNE,?./AFN=/CFB,?./NAF=/BCF,/.AADE^ACHB,
DEAEBH13CDEAEBH13C一打〃GV2設DF=.r,則BE=^-x,在RtACDF中,由勾股定理,得CF=,36+工」,?./CDF=/BHF=90o,/DFC=/HFB,/.ACDF^ABHF,CDGF6‘兩二而尸導*呼+",解得"i=2,電=18>6(舍),「.AFCDGF6‘兩二而尸導6—X4. (1)如圖1,點E、F分別是正方形ABCD的邊BC、CD上的點,/EAF=45°,連接EF,則EF、BE、FD之間的數(shù)量關系是:EF=BE+FD.連結BD,交AE、AF于點M、N,且MN、BM、DN滿足2 2 2 .一一MN=BM+DN,請證明這個等量關系;(2)在4ABC中,AB=AC,點D、E分別為BC邊上的兩點.①如圖2,當/BAC=60°,/DAE=30°時,BD、DE、EC應滿足的等量關系是;②如圖3,當/BAC=",(0°改<90°,)/DAE=la時,BD、DE、EC應滿足的等量關系是2【參考:sin20(十cos2a=1】【解答】(1)見解析;(2) =3爐+3口?EC+EC:⑶DE2=BD2+2cos?-BD-EG+EC2【解析】如圖,將^ABM繞點A逆時針旋轉90o得到△ADG,連接NG.
BB.?旋轉,. ABMADG,?.DG=BM,AG=AM,/ADG=/ABM=45o,/DAG=/BAM,???/ADB+/ADG=45葉45o=90o,即/NDG=90o,?./EAF=45o,/BAM+ZDAN=45o, /DAG+ZDAF=45o,即/GAN=45o,?./GAN=/MAN,AMNAGN(SAS),?.GN=MN,./NDG=90o, =DN2./NDG=90o, =DN2+DM-.:.MN2=DN2+2H戶.?./BAC=60o,AB=AC,.ABC是等邊三角形,?./B=/ACB=60o,,/ACF=60o,G.B=ZACF,??.ZACF+ZACB=1200,即/ECF=120o,,/FCG=60o,ZCFG=30o,/.CG= ,在RtACFG中,由勾股定理得FG=,/BAD+/在RtACFG中,由勾股定理得FG=,/BAD+/EAC=300,/CAF+/EAC=30o,即/EAF=300, /DAE=ZFAE,ADEAFE,,DE=EF,在Rt^EGF中,由勾股定理得E尸=EG2+FG",.二E產=(也右+ +CF“產“產=(EC+Q 1 3=EC*+ECCF^r+4c?hS=EC*+EC?CF+CH,4 4 41DE-=W+BDEC+EC2;②將△ABD逆時針旋轉n:得到△ACF,連接EF,作FGXEC的延長線于點G.由題意可知△ABD ACF,/FGC=90o,,AD=AF,BD=CF,/BAD=/CAF,/B=/ACF,.AB=AC,.B=/ACB,.?.ZB+ZACB+ZBAC=1800,/ACB+/ACF+/FCG=180o,?./BAC=/FCG=a,?./ACF=600,CG=Esa?Cm,f;=sinn?C, /DAE=,門:,???/BAD+ZCAE=,,/CAF+ZCAE=%,即/EAF=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Lactofen-生命科學試劑-MCE-2687
- Dityrosine-dihydrochloride-Bityrosine-dihydrochloride-生命科學試劑-MCE-2022
- 2025年度酒店安全管理責任免除協(xié)議書模板
- 二零二五年度房地產項目財務風險評估顧問協(xié)議
- 二零二五年度特色茶餐廳員工勞動保障合同
- 二零二五年度荒山承包與植被種植一體化合同
- 施工現(xiàn)場施工圖紙會審制度
- 施工現(xiàn)場施工防毒害制度
- 疫情下小區(qū)超市貨品調整及應對措施
- 科技與生產的融合工業(yè)4.0的生產管理實踐案例分析
- 《子路、曾皙、冉有、公西華侍坐》課件()
- 2023《住院患者身體約束的護理》團體標準解讀PPT
- 國外文化消費研究述評
- 部編版語文四年級下冊第一單元 迷人的鄉(xiāng)村風景 大單元整體教學設計
- 湖南省長郡中學2023-2024學年高二下學期寒假檢測(開學考試)物理 含解析
- 五年級行程問題應用題100道
- 血透病人體重健康宣教
- 脾破裂護理查房
- 人教版高中物理必修一全套課件【精品】
- 動物檢疫技術-臨診檢疫技術(動物防疫與檢疫技術)
- 《華夏幸福房地產公司人才流失現(xiàn)狀、原因及應對策略》開題報告(文獻綜述)3400字
評論
0/150
提交評論