




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
11/122022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則下列結論不正確的是()A. B.是的一個周期C.的圖象關于點對稱 D.的定義域是2.若,則所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限3.已知函數(shù)(ω>0),對任意x∈R,都有≤,并且在區(qū)間上不單調(diào),則ω的最小值是()A.6 B.7C.8 D.94.設函數(shù),若,則的取值范圍為A. B.C. D.5.已知是減函數(shù),則a的取值范圍是()A. B.C. D.6.函數(shù)的零點的個數(shù)為A. B.C. D.7.已知函數(shù)y=xa,y=xb,y=cx的圖象如圖所示,則A.c<b<a B.a<b<cC.c<a<b D.a<c<b8.已知一幾何體的三視圖,則它的體積為A. B.C. D.9.設向量,,,則A. B.C. D.10.在下列各圖中,每個圖的兩個變量具有線性相關關系的圖是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù),則______12.若函數(shù)在區(qū)間上為減函數(shù),則實數(shù)的取值范圍為________13.已知函數(shù)的定義域和值域都是集合,其定義如表所示,則____________.x01201214.已知函數(shù),,則________15.已知函數(shù),若時,恒成立,則實數(shù)k的取值范圍是_____.16.命題“,”的否定是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,平面平面為等邊三角形,且分別為的中點(1)求證:平面;(2)求證:平面平面;18.已知冪函數(shù)的圖像經(jīng)過點(),函數(shù)為奇函數(shù).(1)求冪函數(shù)的解析式及實數(shù)a的值;(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并用的數(shù)單調(diào)性定義證明19.已知動圓經(jīng)過點和(1)當圓面積最小時,求圓的方程;(2)若圓的圓心在直線上,求圓的方程.20.已知函數(shù)(1)若,求a的值;(2)判斷函數(shù)的奇偶性,并證明你的結論;(3)若對于恒成立,求實數(shù)m的范圍21.已知是定義在上的奇函數(shù).(1)求實數(shù)和的值;(2)根據(jù)單調(diào)性的定義證明:在定義域上為增函數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】畫出函數(shù)的圖象,觀察圖象可解答.【詳解】畫出函數(shù)的圖象,易得的周期為,且是偶函數(shù),定義域是,故A,B,D正確;點不是函數(shù)的對稱中心,C錯誤.故選:C2、A【解析】先由題中不等式得出在第二象限,然后求出的范圍,即可判斷其所在象限【詳解】因為,,所以,故在第二象限,即,故,當為偶數(shù)時,在第一象限,當為奇數(shù)時,在第三象限,即所在象限是第一、三象限故選A.【點睛】本題考查了三角函數(shù)的象限角,屬于基礎題3、B【解析】根據(jù),得為函數(shù)的最大值,建立方程求出的值,利用函數(shù)的單調(diào)性進行判斷即可【詳解】解:對任意,都有,為函數(shù)的最大值,則,,得,,在區(qū)間,上不單調(diào),,即,即,得,則當時,最小.故選:B.4、A【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)單調(diào)遞增,,列出不等式,解出即可.【詳解】∵函數(shù)在定義域內(nèi)單調(diào)遞增,,∴不等式等價于,解得,故選A.【點睛】本題主要考查了對數(shù)不等式的解法,在解題過程中要始終注意函數(shù)的定義域,也是易錯點,屬于中檔題.5、D【解析】利用分段函數(shù)在上單調(diào)遞減的特征直接列出不等式組求解即得.【詳解】因函數(shù)是定義在上的減函數(shù),則有,解得,所以的取值范圍是.故選:D6、B【解析】略【詳解】因為函數(shù)單調(diào)遞增,且x=3,y>0,x=1,y<0,所以零點個數(shù)為17、A【解析】由指數(shù)函數(shù)、冪函數(shù)的圖象和性質(zhì),結合圖象可得a>1,b=12,【詳解】由圖象可知:a>1,y=xb的圖象經(jīng)過點4,2當x=1時,y=c∴c<b<a,故選:A【點睛】本題考查了函數(shù)圖象的識別,關鍵掌握指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)的圖象和性質(zhì),屬于基礎題.8、C【解析】所求體積,故選C.9、A【解析】,由此可推出【詳解】解:∵,,,∴,,,,故選:A【點睛】本題主要考查平面向量垂直的坐標表示,考查平面向量的模,屬于基礎題10、D【解析】由線性相關的定義可知:(2)中兩變量線性正相關,(3)中兩變量線性負相關,故選:D考點:變量線性相關問題二、填空題:本大題共6小題,每小題5分,共30分。11、##0.5【解析】首先計算,從而得到,即可得到答案.【詳解】因為,所以.故答案為:12、【解析】分類討論,時根據(jù)二次函數(shù)的性質(zhì)求解【詳解】時,滿足題意;時,,解得,綜上,故答案為:13、【解析】根據(jù)表格從里層往外求即可.【詳解】解:由表可知,.故答案為:.14、【解析】發(fā)現(xiàn),計算可得結果.【詳解】因為,,且,則.故答案為-2【點睛】本題主要考查函數(shù)的性質(zhì),由函數(shù)解析式,計算發(fā)現(xiàn)是關鍵,屬于中檔題.15、【解析】當時,,當時,,又,如圖所示:當時,在處取得最大值,且,令,則數(shù)列是以1為首項,以為公比的等比數(shù)列,∴,∴,若時,恒成立,只需,當上,均有恒成立,結合圖形知:,∴,∴,令,,當時,,∴,∴,當時,,,∴,∴最大,∴,∴.考點:1.函數(shù)圖像;2.恒成立問題;3.數(shù)列的最值.16、.【解析】全稱命題的否定:將任意改為存在并否定原結論,即可知原命題的否定.【詳解】由全稱命題的否定為特稱命題,所以原命題的否定:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)因為分別為的中點,所以,由線面平行的判定定理,即可得到平面;(2)因為為的中點,得到,利用面面垂直的性質(zhì)定理可證得平面,由面面垂直的判定定理,即可得到平面平面【詳解】(1)因為、分別為、的中點,所以.又因為平面,所以平面;(2)因為,為的中點,所以,又因為平面平面,平面平面,且平面,所以平面,平面,平面平面.【點睛】本題考查線面位置關系的判定與證明,熟練掌握空間中線面位置關系的判定、幾何特征是解答的關鍵,其中垂直、平行關系證明中應用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直18、(1);(2)在(-1,1)上單調(diào)遞增,證明見解析【解析】(1)首先代點,求函數(shù)的解析式,利用奇函數(shù)的性質(zhì),求,再驗證;(2)根據(jù)函數(shù)單調(diào)性的定義,設,作差,判斷符號,即可判斷函數(shù)的單調(diào)性.【小問1詳解】由條件可知,所以,即,,因為是奇函數(shù),所以,即,滿足是奇函數(shù),所以成立;【小問2詳解】由(1)可知,在區(qū)間上任意取值,且,,因為,所以,,所以,即,所以函數(shù)在區(qū)間上單調(diào)遞增.19、(1)(2)【解析】(1)以為直徑的圓即為面積最小的圓,由此可以算出中點坐標和長度,即可求出圓的方程;(2)設出圓的標準方程,根據(jù)題意代入數(shù)值解方程組即可.【小問1詳解】要使圓的面積最小,則為圓的直徑,圓心,半徑所以所求圓的方程為:.【小問2詳解】設所求圓的方程為,根據(jù)已知條件得,所以所求圓的方程為.20、(1)(2)奇函數(shù),證明見解析(3)【解析】(1)代入,得到,利用對數(shù)的運算即可求解;(2)先判斷奇偶性,然后分析定義域并計算的數(shù)量關系,由此完成證明;(3)將已知轉(zhuǎn)化為,求出在的最小值,即可得解.【小問1詳解】,,即,解得,所以a的值為【小問2詳解】為奇函數(shù),證明如下:由,解得:或,所以定義域為關于原點對稱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光學玻璃的殘余應力分析考核試卷
- 營養(yǎng)知識在慢性病管理中的應用考核試卷
- 貨運火車站物流設備維護保養(yǎng)與故障排除考核試卷
- 木材加工在建筑維護中的應用考核試卷
- 礦物加工與無機鹽生產(chǎn)考核試卷
- 連續(xù)搬運設備數(shù)字化設計與仿真考核試卷
- 圖書館綠色建筑設計考核試卷
- 肥料制造工藝改進與新農(nóng)村建設研究考核試卷
- 醫(yī)院藥劑輔助人員藥品研發(fā)與知識產(chǎn)權運營合同
- 電商店鋪代運營及供應鏈管理服務協(xié)議
- 出納崗面試試題及答案
- 【公開課】+埃及+課件-2024-2025學年七年級地理下學期湘教版
- 北京開放大學2025年《企業(yè)統(tǒng)計》形考作業(yè)4答案
- 六下試卷計算題目及答案
- 廣東2025年中考模擬數(shù)學試卷試題及答案詳解
- 湖北省武漢市2025屆高中畢業(yè)生二月調(diào)研考試數(shù)學試題及答案
- 2025-2030中國屏蔽泵市場運行態(tài)勢分析及運營動態(tài)規(guī)劃研究報告
- 2025年高考作文備考之十大熱點主題及寫作導引
- 弘揚傳承中華傳統(tǒng)文化
- 民宿管理的規(guī)章制度
- 2025年北京市西城區(qū)高三一模數(shù)學試卷(含答案)
評論
0/150
提交評論