版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.不等式的解集是()A.或 B.或C. D.2.函數(shù)圖象大致是()A. B.C. D.3.若xlog34=1,則4x+4–x=A.1 B.2C. D.4.在平面直角坐標(biāo)系中,直線的斜率是()A. B.C. D.5.在四面體中,已知棱的長為,其余各棱長都為1,則二面角的平面角的余弦值為()A. B.C. D.6.“”的一個充分不必要條件是()A. B.C. D.7.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},則集合A∩(?UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}8.已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實數(shù)的取值范圍為()A. B.C. D.9.函數(shù)的零點是A. B.C. D.10.已知,,,則a、b、c的大小順序為()A. B.C. D.11.設(shè)函數(shù)y=,當(dāng)x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值812.如圖所示,在正方體ABCD—A1B1C1D1中,M、N分別是BB1、BC的中點.則圖中陰影部分在平面ADD1A1上的正投影為()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限的角,且,則;④直線是函數(shù)的一條對稱軸;⑤函數(shù)的圖像關(guān)于點成對稱中心圖形.其中正確命題序號是__________.14.已知在上單調(diào)遞增,則的范圍是_____15.我國采用的“密位制”是6000密位制,即將一個圓周分為6000等份,每一個等份是一個密位,那么120密位等于______rad16.已知函數(shù),的最大值為3,最小值為2,則實數(shù)的取值范圍是________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知集合,(1)時,求及;(2)若時,求實數(shù)a的取值范圍18.在平行四邊形中,過點作的垂線交的延長線于點,.連結(jié)交于點,如圖1,將沿折起,使得點到達(dá)點的位置.如圖2.證明:直線平面若為的中點,為的中點,且平面平面求三棱錐的體積.19.如圖,在四棱錐中,側(cè)面底面,側(cè)棱,底面為直角梯形,其中為中點.(1)求證:平面;(2)求異面直線與所成角的余弦值;(3)線段上是否存在,使得它到平面的距離為?若存在,求出的值.20.設(shè)函數(shù)的定義域為,函數(shù)的定義域為(1)求;(2)若,求實數(shù)的取值范圍21.設(shè)(1)分別求(2)若,求實數(shù)的取值范圍22.已知函數(shù).(1)求解不等式的解集;(2)當(dāng)時,求函數(shù)最小值,以及取得最小值時的值.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】把不等式左邊的二次三項式因式分解后求出二次不等式對應(yīng)方程的兩根,利用二次不等式的解法可求得結(jié)果【詳解】由,得,解得或所以原不等式的解集為或故選:A2、A【解析】利用函數(shù)的奇偶性排除部分選項,再利用當(dāng)x>0時,函數(shù)值的正負(fù)確定選項即可.【詳解】函數(shù)f(x)定義域為,所以函數(shù)f(x)是奇函數(shù),排除BC;當(dāng)x>0時,,排除D故選:A3、D【解析】條件可化為x=log43,運用對數(shù)恒等式,即可【詳解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故選D【點睛】本題考查對數(shù)性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題目4、A【解析】將直線轉(zhuǎn)化成斜截式方程,即得得出斜率.【詳解】解:由題得,原式可化為,斜率.故選:A.5、C【解析】由已知可得AD⊥DC又由其余各棱長都為1得正三角形BCD,取CD得中點E,連BE,則BE⊥CD在平面ADC中,過E作AD的平行線交AC于點F,則∠BEF為二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位線),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F(xiàn)是斜邊中點)∴cos∠BEF=故選C.6、D【解析】利用充分條件,必要條件的定義判斷即得.【詳解】由,可得,所以是的充要條件;所以是既不充分也不必要條件;所以是的必要不充分條件;所以是的充分不必要條件.故選:D.7、A【解析】先求出?UB,再求A∩(?UB)即可.【詳解】解:由已知?UB={2,5},所以A∩(?UB)={2,5}.故選:A.【點睛】本題考查集合的交集和補集的運算,是基礎(chǔ)題.8、B【解析】根據(jù)二次函數(shù)的圖象與性質(zhì),可知區(qū)間在對稱軸的右面,即,即可求得答案.【詳解】函數(shù)為對稱軸開口向上的二次函數(shù),在區(qū)間上是單調(diào)增函數(shù),區(qū)間在對稱軸的右面,即,實數(shù)的取值范圍為.故選B.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),明確二次函數(shù)的對稱軸、開口方向與函數(shù)的單調(diào)性的關(guān)系是解題關(guān)鍵.9、B【解析】函數(shù)y=x2-2x-3的零點即對應(yīng)方程的根,故只要解二次方程即可【詳解】由y=x2-2x-3=(x-3)(x+1)=0,得到x=3或x=-1,所以函數(shù)y=x2-2x-3的零點是3和-1故選B【點睛】本題考查函數(shù)的零點的概念和求法.屬基本概念、基本運算的考查10、D【解析】由對數(shù)的運算性質(zhì)可判斷出,而由已知可得,從而可判斷出,進(jìn)而可比較大小詳解】由,故,因為,所以,因為,所以,所以,即故選:D11、B【解析】由均值不等式可得答案.【詳解】由,當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,函數(shù)的函數(shù)值趨于所以函數(shù)無最大值,有最小值4故選:B12、A【解析】確定三角形三點在平面ADD1A1上的正投影,從而連接起來就是答案.【詳解】點M在平面ADD1A1上的正投影是的中點,點N在平面ADD1A1上的正投影是的中點,點D在平面ADD1A1上的正投影仍然是D,從而連接其三點,A選項為答案,故選:A二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、④⑤【解析】根據(jù)兩角和與差的正弦公式可得到sinα+cosαsin(α)結(jié)合正弦函數(shù)的值域可判斷①;根據(jù)誘導(dǎo)公式得到=sinx,再由正弦函數(shù)的奇偶性可判斷②;舉例說明該命題正誤可判斷③;x代入到y(tǒng)=sin(2xπ),根據(jù)正弦函數(shù)的對稱性可判斷④;x代入到,根據(jù)正切函數(shù)的對稱性可判斷⑤.【詳解】對于①,sinα+cosαsin(α),故①錯誤;對于②,=sinx,其為奇函數(shù),故②錯誤;對于③,當(dāng)α、β時,α、β是第一象限的角,且α>β,但sinα=sinβ,故③錯誤;對于④,x代入到y(tǒng)=sin(2xπ)得到sin(2π)=sin1,故命題④正確;對于⑤,x代入到得到tan()=0,故命題⑤正確.故答案為④⑤【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了三角函數(shù)的化簡與求值問題,是綜合性題目14、【解析】令,利用復(fù)合函數(shù)的單調(diào)性分論討論函數(shù)的單調(diào)性,列出關(guān)于的不等式組,求解即可.【詳解】令當(dāng)時,由題意知在上單調(diào)遞增且對任意的恒成立,則,無解;當(dāng)時,由題意知在上單調(diào)遞減且對任意的恒成立,則,解得.故答案為:【點睛】本題考查對數(shù)型復(fù)合函數(shù)的單調(diào)性,同增異減,求解時注意對數(shù)函數(shù)的定義域,屬于基礎(chǔ)題.15、##【解析】根據(jù)已知定義,結(jié)合弧度制的定義進(jìn)行求解即可.【詳解】設(shè)120密位等于,所以有,故答案為:16、【解析】畫出函數(shù)的圖像,對稱軸為,函數(shù)在對稱軸的位置取得最小值2,令,可求得,或,進(jìn)而得到參數(shù)范圍.【詳解】函數(shù)的圖象是開口朝上,且以直線為對稱的拋物線,當(dāng)時,函數(shù)取最小值2,令,則,或,若函數(shù)在上的最大值為3,最小值為2,則,故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),(2)【解析】(1)先求出集合,,,然后結(jié)合集合的交、并運算求解即可;(2)由,得,然后結(jié)合集合的包含關(guān)系對B是否為空集進(jìn)行分討論,即可求解【小問1詳解】∵由,得由題可知∴或∴∴;【小問2詳解】∵,∴分兩種情況考慮:時,,解得:時,則,解得:所以a取值范圍為18、(1)見解析;(2)【解析】(1)在平面圖形內(nèi)找到,則在立體圖形中,可證面.(2)解法一:根據(jù)平面平面,得到平面,得到到平面的距離,根據(jù)平面圖形求出底面平的面積,求得三棱錐的體積.解法二:找到三棱錐的體積與四棱錐的體積之間的關(guān)系比值關(guān)系,先求四棱錐的體積,從而得到三棱錐的體積.【詳解】證明:如圖1,中,所以.所以也是直角三角形,,如圖題2,所以平面.解法一:平面平面,且平面平面,平面,平面.取的中點為,連結(jié)則平面,即為三棱錐的高..解法二:平面平面,且平面平面,平面,平面.為的中點,三棱錐的高等于.為的中點,的面積是四邊形的面積的,三棱錐的體積是四棱錐的體積的三棱錐的體積為.【點睛】本題考查線面垂直的判定,面面垂直的性質(zhì),以及三棱錐體積的計算,都是對基礎(chǔ)內(nèi)容的考查,屬于簡單題.19、(1)見解析;(2);(3)存在,..【解析】(1)根據(jù)線面垂直的判定定理可知,只需證直線PO垂直平面ABCD中的兩條相交直線垂直即可;(2)先通過平移將兩條異面直線平移到同一個起點B,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出結(jié)論試題解析:(1)證明:在中為中點,所以.又側(cè)面底面,平面平面平面,所以平面.(2)解:連接,在直角梯形中,,有且,所以四邊形是平行四邊形,所以.由(1)知為銳角,所以是異面直線與所成的角,因為,在中,,所以,在中,因為,所以,在中,,所以,所以異面直線與所成的角的余弦值為.(3)解:假設(shè)存在點,使得它到平面的距離為.設(shè),則,由(2)得,在中,,所以,由得,所以存在點滿足題意,此時.20、(1);(2).【解析】(1)由題知,即得;(2)根據(jù),得,即求.【小問1詳解】由題知,解得:,∴.【小問2詳解】由題知,若,則,,實數(shù)的取值范圍是.21、(1);或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度電氣設(shè)備安裝與維修合同
- 總經(jīng)理聘請合同模板
- 房地產(chǎn)代理合同范文:委托與代理
- 代理合同:房地產(chǎn)估價委托協(xié)議書
- 廣告業(yè)務(wù)經(jīng)營權(quán)轉(zhuǎn)讓合同
- 產(chǎn)品責(zé)任保險合同專業(yè)版解析
- 自動化機器租賃協(xié)議
- 2024裝修工程轉(zhuǎn)包合同范本
- 年度長期合作協(xié)議范例
- 全面購銷合同模板珍藏
- 君子自強不息課件
- 2022人教版高二英語新教材選擇性必修全四冊課文原文及翻譯(英漢對照)
- WDZANYJY23低壓電力電纜技術(shù)規(guī)格書
- 抗高血壓藥物基因檢測課件
- 醫(yī)院管理醫(yī)院應(yīng)急調(diào)配機制
- (公開課)文言文斷句-完整版課件
- 小學(xué)生性教育調(diào)查問卷
- 醫(yī)院感染管理質(zhì)量持續(xù)改進(jìn)反饋表
- 旅游行政管理第二章旅游行政管理體制課件
- 學(xué)生崗位實習(xí)家長(或法定監(jiān)護(hù)人)知情同意書
- 衛(wèi)生院關(guān)于召開基本公共衛(wèi)生服務(wù)項目培訓(xùn)會的通知
評論
0/150
提交評論