2023屆山東省日照農(nóng)業(yè)學(xué)校數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第1頁
2023屆山東省日照農(nóng)業(yè)學(xué)校數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第2頁
2023屆山東省日照農(nóng)業(yè)學(xué)校數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第3頁
2023屆山東省日照農(nóng)業(yè)學(xué)校數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第4頁
2023屆山東省日照農(nóng)業(yè)學(xué)校數(shù)學(xué)高一上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.已知集合,,,則A. B.C. D.2.如圖,在三棱錐中,,分別為AB,AD的中點,過EF的平面截三棱錐得到的截面為EFHG.則下列結(jié)論中不一定成立的是()A. B.C.平面 D.平面3.若-<α<0,則點P(tanα,cosα)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.對于函數(shù),有以下幾個命題①的圖象關(guān)于點對稱,②在區(qū)間遞增③的圖象關(guān)于直線對稱,④最小正周期是則上述命題中真命題的個數(shù)是()A.0 B.1C.2 D.35.主視圖為矩形的幾何體是()A. B.C. D.6.若,,,,則,,的大小關(guān)系是A. B.C. D.7.函數(shù)是()A.偶函數(shù),在是增函數(shù)B.奇函數(shù),在是增函數(shù)C.偶函數(shù),在是減函數(shù)D.奇函數(shù),在是減函數(shù)8.如果直線l,m與平面滿足和,那么必有()A.且 B.且C.且 D.且9.集合,則A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)10.若是第二象限角,則點在()A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知,,則A. B.C. D.,12.已知扇形的面積為9,半徑為3,則扇形的圓心角(正角)的弧度數(shù)為()A.1 B.C.2 D.二、填空題(本大題共4小題,共20分)13.____________14.設(shè)函數(shù),則____________15.設(shè),若存在使得關(guān)于x的方程恰有六個解,則b的取值范圍是______16.已知函數(shù).(1)當(dāng)函數(shù)取得最大值時,求自變量x的集合;(2)完成下表,并在平面直角坐標(biāo)系內(nèi)作出函數(shù)在的圖象.x0y三、解答題(本大題共6小題,共70分)17.已知集合A為函數(shù)的定義域,集合B是不等式的解集(1)時,求;(2)若,求實數(shù)a的取值范圍18.設(shè)函數(shù).(1)計算;(2)求函數(shù)的零點;(3)根據(jù)第(1)問計算結(jié)果,寫出的兩條有關(guān)奇偶性和單調(diào)性的正確性質(zhì),并證明其中一個.19.已知函數(shù)(0<ω<6)的圖象的一個對稱中心為(1)求f(x)的最小正周期;(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;(3)求f(x)在區(qū)間上的最大值和最小值20.已知,是方程的兩根.(1)求實數(shù)的值;(2)求的值;(3)求的值.21.如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是的中點(1)求證:(2)若,求證:平面平面22.已知函數(shù)是定義在1,1上的奇函數(shù),且.(1)求m,n的值;(2)判斷在1,1上的單調(diào)性,并用定義證明;(3)設(shè),若對任意的,總存在,使得成立,求實數(shù)k的值.

參考答案一、選擇題(本大題共12小題,共60分)1、D【解析】本題選擇D選項.2、D【解析】利用線面平行的判定和性質(zhì)對選項進行排除得解.【詳解】對于,,分別為,的中點,,EF與平面BCD平行過的平面截三棱錐得到的截面為,平面平面,,,故AB正確;對于,,平面,平面,平面,故正確;對于,的位置不確定,與平面有可能相交,故錯誤.故選:D.【點睛】熟練運用線面平行的判定和性質(zhì)是解題的關(guān)鍵.3、B【解析】∵-<α<0,∴tanα<0,cosα>0,∴點P(tanα,cosα)位于第二象限,故選B考點:本題考查了三角函數(shù)值的符號點評:熟練掌握三角函數(shù)的定義及三角函數(shù)的值的求法是解決此類問題的關(guān)鍵,屬基礎(chǔ)題4、C【解析】先通過輔助角公式將函數(shù)化簡,進而結(jié)合三角函數(shù)的圖象和性質(zhì)求得答案.【詳解】由題意,,函數(shù)周期,④正確;,①錯誤;,③錯誤;由,②正確.故選:C.5、A【解析】根據(jù)幾何體的特征,由主視圖的定義,逐項判斷,即可得出結(jié)果.【詳解】A選項,圓柱的主視圖為矩形,故A正確;B選項,圓錐的主視圖為等腰三角形,故B錯;C選項,棱錐的主視圖為三角形,故C錯;D選項,球的主視圖為圓,故D錯.故選:A.【點睛】本題主要考查簡單幾何體的正視圖,屬于基礎(chǔ)題型.6、D【解析】分析:利用指數(shù)函數(shù)與對數(shù)函數(shù)及冪函數(shù)的行賄可得到,再構(gòu)造函數(shù),通過分析和的圖象與性質(zhì),即可得到結(jié)論.詳解:由題意在上單調(diào)遞減,所以,在上單調(diào)遞則,所以,在上單調(diào)遞則,所以,令,則其為單調(diào)遞增函數(shù),顯然在上一一對應(yīng),則,所以,在坐標(biāo)系中結(jié)合和的圖象與性質(zhì),量曲線分別相交于在和處,可見,在時,小于;在時,大于;在時,小于,所以,所以,即,綜上可知,故選D.點睛:本題主要考查了指數(shù)式、對數(shù)式和冪式的比較大小問題,本題的難點在于的大小比較,通過構(gòu)造指數(shù)函數(shù)與一次函數(shù)的圖象與性質(zhì)分析解決問題是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,試題有一定難度,屬于中檔試題.7、B【解析】利用奇偶性定義判斷的奇偶性,根據(jù)解析式結(jié)合指數(shù)函數(shù)的單調(diào)性判斷的單調(diào)性即可.【詳解】由且定義域為R,故為奇函數(shù),又是增函數(shù),為減函數(shù),∴為增函數(shù)故選:B.8、A【解析】根據(jù)題設(shè)線面關(guān)系,結(jié)合平面的基本性質(zhì)判斷線線、線面、面面的位置關(guān)系.【詳解】由,則;由,則;由上條件,m與可能平行、相交,與有可能平行、相交.綜上,A正確;B,C錯誤,m與有可能相交;D錯誤,與有可能相交故選:A9、B【解析】先求出集合A,B,再求兩集合的交集即可【詳解】解:由,得,所以,由于,所以,所以,所以,故選:B10、D【解析】先分析得到,即得點所在的象限.【詳解】因為是第二象限角,所以,所以點在第四象限,故選D【點睛】本題主要考查三角函數(shù)的象限符合,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.11、D【解析】∵,,∴,,∴.故選12、C【解析】利用扇形面積公式即可求解.【詳解】設(shè)扇形的圓心角的弧度數(shù)為,由題意得,得.故選:C.二、填空題(本大題共4小題,共20分)13、【解析】,故答案為.考點:對數(shù)的運算.14、2【解析】利用分段函數(shù)由里及外逐步求解函數(shù)的值即可.【詳解】解:由已知,所以,故答案為:.【點睛】本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.15、【解析】作出f(x)的圖像,當(dāng)時,,當(dāng)時,.令,則,則該關(guān)于t的方程有兩個解、,設(shè)<,則,.令,則,據(jù)此求出a的范圍,從而求出b的范圍【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,則f(x)圖像如圖所示:當(dāng)時,,當(dāng)時,令,則,∵關(guān)于x的方程恰有六個解,∴關(guān)于t的方程有兩個解、,設(shè)<,則,,令,則,∴且,要存a滿足條件,則,解得故答案為:16、(1)(2)答案見解析【解析】(1)由三角恒等變換求出解析式,再求得最大值時的x的集合,(2)由五點法作圖,列出表格,并畫圖即可.【小問1詳解】令,函數(shù)取得最大值,解得,所以此時x的集合為.【小問2詳解】表格如下:x0y11作圖如下,三、解答題(本大題共6小題,共70分)17、(1)(2)【解析】(1)由函數(shù)定義域求A,由不等式求B,按照集合交并補運算規(guī)則即可;(2)由A推出B的范圍,由于a的不確定性,可以將不等式轉(zhuǎn)換,用基本不等式解決.【小問1詳解】由,解得:,即;當(dāng)時,由得:或,∴,∴,∴;【小問2詳解】由知:,即對任意,恒成立,∴,∵,當(dāng)且僅當(dāng),即時取等號,∴,即實數(shù)a的取值范圍為;綜上:,.18、(1),,,;(2)零點為;(3)答案見解析.【解析】(1)根據(jù)解析式直接計算即可;(2)由可解得結(jié)果;(3)由(1)易知為非奇非偶函數(shù),用定義證明是上的減函數(shù).【詳解】(1),,,.(2)令得,故,即函數(shù)的零點為.(3)由(1)知,,且,故為非奇非偶函數(shù);是上的減函數(shù).證明如下:()任取,且,則,因為當(dāng)時,,則,又,,所以,即,故函數(shù)是上的減函數(shù).19、(1);(2)[],k∈Z;(3)最大值為10,最小值為【解析】(1)先降冪化簡原式,再利用對稱中心求得ω,進而得周期;(2)利用正弦函數(shù)的單調(diào)區(qū)間列出不等式即可得解;(3)利用(2)的結(jié)論,確定所給區(qū)間的單調(diào)性,再得最值【詳解】解:(1)=4sin(sincos-cossin)-1=2sin2-1-2sincos=-cosωx-sinωx=-2sin(ωx),∵是對稱中心,∴-,得ω=2-12k,k∈Z,∵0<ω<6,∴k=0,ω=2,∴,其最小正周期為π;(2)由,得,∴f(x)的單調(diào)遞增區(qū)間為:[],k∈Z,(3)由(2)可知,f(x)在[]遞減,在[]遞增,可知當(dāng)x=時得最大值為0;當(dāng)x=時得最小值故f(x)在區(qū)間[]上的最大值為0,最小值為【點睛】此題考查了三角函數(shù)式的恒等變換,周期性,單調(diào)性,最值等,屬于中檔題20、(1);(2);(3)【解析】(1)根據(jù)方程的根與系數(shù)關(guān)系可求,,然后結(jié)合同角平方關(guān)系可求,(2)結(jié)合(1)可求,,結(jié)合同角基本關(guān)系即可求,(3)利用將式子化為齊次式,再利用同角三角函數(shù)的基本關(guān)系,將弦化切,代入可求【詳解】解:(1)由題意可知,,,∴,∴,∴,(2)方程的兩根分別為,,∵,∴,∴,,則,(3)【點睛】本題主要考查了同角三角函數(shù)關(guān)系式和萬能公式的應(yīng)用,屬于基本知識的考查21、(1)見解析;(2)見解析【解析】分析:(1)可根據(jù)為等腰三角形得到,再根據(jù)平面平面可以得到平面,故.(2)因及是中點,從而有,再根據(jù)平面得到,從而平面,故平面平面.詳解:(1)證明:因為,點是棱的中點,所以,平面.因為平面平面,平面平面,平面,所以平面,又因為平面,所以.(2)證明:因為,點是的中點,所以.由(1)可得,又因為,所以平面,又因為平面,所以平面平面點睛:線線垂直的證明,可歸結(jié)為線面垂直,也可以轉(zhuǎn)化到平面中的某兩條直線的垂直問題,而面面垂直的證明,可轉(zhuǎn)化為線面垂直問題,也轉(zhuǎn)化為證明二面角為直二面角.22、(1),(2)在上遞增,證明見解析(3)【解析】(1)由為1,1上奇

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論