由大數(shù)據(jù)到智能醫(yī)學(xué)課件_第1頁
由大數(shù)據(jù)到智能醫(yī)學(xué)課件_第2頁
由大數(shù)據(jù)到智能醫(yī)學(xué)課件_第3頁
由大數(shù)據(jù)到智能醫(yī)學(xué)課件_第4頁
由大數(shù)據(jù)到智能醫(yī)學(xué)課件_第5頁
已閱讀5頁,還剩133頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

由大數(shù)據(jù)到智能醫(yī)學(xué)由大數(shù)據(jù)到智能醫(yī)學(xué)1Translational

MedicineTwo

strategic

requirement

Changeofmedicalmodel

Health

care

reformThe

engine

and

bridge

from

big

data

to

intelligent

medicineTranslationalMedicineTwostra2From

bench

to

bedsideFrom

big

data

to

intelligent

medicineGenomic

medicineTranslational

MedicineDigital

medicineBig

dataFrombenchtobedsideGenomicm3Intelligent

Medicine5P MedicinePredictive

medicine Preventive

medicine

Personalized

medicine Precision

medicineParticipatory medicineIntelligentMedicine5P Medicin4Intelligent

medicineRight

personRight

timeRight

treatmentRight

healthcareIntelligentmedicineRightpers5Big DataBig Data6Nature

498:

255

(2013)Nature498:255(2013)7THEBIG

CHALLENGES

OF

BIG

DATAAs

they

grapple

with

increasinglylarge

data

sets,

biologists

andcomputer

scientists

uncork

new

bottlenecks.Biologists

are

joining

thebig-data

club.With

the

advent

ofhigh-throughput

genomics,

life

scientists

are

starting

to

grapplewith

massive

data

sets,

encountering

challengeswith

handling,

processing

andmoving

informationthat

were

once

the

domain

of

astronomers

and

high-energyphysicists.Nature

498:

255

(2013)THEBIGCHALLENGESOFBIGDATA8Biomedical

big

dataBiological

dataMedical

dataReal

time

physiological

and

pathological

dateBiomedicalbigdataBiological9BiologicalDataBiologicalData10Standardizing

experimentalprotocolsCurrent

Opinion

inBiotechnology

19:354-359(2008)Systems

biology

aims

at

understanding

thebehavior

of

biologicalnetworks

by

mathematicalmodeling

basedon

experimentaldata.The

procedures

of

data

generation

are

insufficiently

documented

and

data

processing

is

arbitrary.Standardization

at

multiple

levelsis

essential.One

of

thekey

issues

isto

obtain

highly

reproducible

quantitative

data

for

mathematical

modeling.Standardizingexperimentalpro11Standardizationof

hypothesis-driven

research

insystems

biologyCurrent

Opinion

in

Biotechnology

19:354-359(2008)Standardizationofhypothesis-12Integration

of

complexmultidimensional dataNature

452:553

(2008)Integrationof complexmultid13OmicsGenomics

(

metagenomics

)Epigenomics

(

Rnomics

)TranscriptomicsProteomicsMetabolomicsInteractomicsPhenomicsOmicsGenomics(metagenomics)14Microbiome-wide

association

studies

link

dynamic

microbial

consortia

to

diseaseN

AT

U

R

E

5

3

5

9

4

,

2016

RapidadvancesinDNAsequencing,metabolomics,proteomicsand

computational

tools

are

dramatically

increasing

accessto

the

microbiome

andidentification

of

itslinks

with

disease.

In

particular,

time-series

studiesand

multiple

molecular

perspectives

are

facilitatingmicrobiome-wide

associationstudies,whichareanalogoustogenome-wideassociationstudies.

Earlyfindingspointtoactionableoutcomesofmicrobiome-wideassociationstudies,although

their

clinical

applicationhas

yet

to

be

approved.

Anappreciationofthe

complexityofinteractions

among

the

microbiome

and

the

host’s

diet,chemistry

and

health,as

well

asdetermining

the

frequency

of

observationsthat

are

needed

to

capture

and

integratethis

dynamic

interface,

is

paramount

for

developingprecision

diagnostics

and

therapies

that

arebased

on

the

microbiome.Microbiome-wideassociationst15Developing

a

microbial

Global

Positioning

System

to

stratifyindividuals

and

to

guide

their

treatmentDevelopingamicrobialGlobal16RnomicssnRNAsnoRNAmicroRNAlncRNACircular

RNARnomicssnRNA17OmicsGenomicsEpigenomicsTranscriptomicsProteomicsMetabolomicsInteractomicsPhenomicsOmicsGenomics18Maximizing

thepotential

of

themouseasa

modelorganismNature

Review/Genetics

10:372

(2009)Maximizingthepotentialofth19The

biological

organization

ofthe

'-omics'Thebiologicalorganizationof20由大數(shù)據(jù)到智能醫(yī)學(xué)課件21Globalviews

of

the

human

interactomeGlobalviewsofthehumaninte22Medical DataClinicaldataStructured

medical

recordMedicalimageCohord

research

dataClinical

research

dataMedical DataClinicaldataCohor23Real

time

physiological

andpathological

date

from

in

situ sensorsWearable

devicesFilmChipsImplantable

chipsRealtimephysiologicalandpa24Fully

integrated

wearable

sensor

arrays(FISA

)for

multiplexed

perspiration

analysisN

AT

U

R

E

529:

5

0

9

(2016)Fullyintegratedwearablesens25Sensing

a

shift

in

health

careScience

TranslationalMedicine

7

(283),

283rv3,2015Sensingashiftinhealthcare26由大數(shù)據(jù)到智能醫(yī)學(xué)課件27Epidermal

ElectronicsScience

333,

838

(2011)EpidermalElectronicsScience328LifeWatch獲得遠(yuǎn)程患者可粘貼監(jiān)測設(shè)備FDA許可瑞士遠(yuǎn)程心臟監(jiān)測公司LifeWatch獲得其LifeWatch

VSP(生命體征貼片)的FDA許可,是遠(yuǎn)程患者監(jiān)測貼片。

LifeWatch尺寸小、易粘貼、穿戴舒適,與現(xiàn)在使用的為數(shù)眾多的有線設(shè)備相比,限制更少。VSP可用于醫(yī)院、救護(hù)車、護(hù)理和家庭環(huán)境。用一個(gè)舒適得多且非常便宜的方式替代多個(gè)硬件設(shè)備。同時(shí)設(shè)備還可定制參數(shù)、設(shè)定提醒,可配置數(shù)據(jù)并兼容EMR系統(tǒng)。LifeWatch是一次性粘貼帶,包含檢測心電圖、心率、呼吸頻率、體溫、血氧飽和度和運(yùn)動(dòng)的傳感器。他還包含電池,可通過設(shè)備連續(xù)收集數(shù)據(jù)五到七天。針對VSP系統(tǒng)的許可還包括無線連接血壓腕帶和用于處理及傳輸數(shù)據(jù)的安卓app。app還能監(jiān)測患者,同時(shí)在發(fā)生異常生命體征時(shí)發(fā)出警報(bào)。LifeWatch獲得遠(yuǎn)程患者可粘貼監(jiān)測設(shè)備FDA許可瑞士29Soft,

stretchable,

fully

implantable

chipsSoft,stretchable,fullyimpla30Soft,

stretchable,

fully

implantable

miniaturized

chipsSoft,stretchable,fullyimpla31由大數(shù)據(jù)到智能醫(yī)學(xué)課件32mHealth

taking

centerstageScienceTranslational

Medicine

7

(283),

283rv3,

2015mHealthtakingcenterstage33Heterogeneous

and

non-traditional

sources

of big

dataGenomics

Proteomics

Bioinformatics

14:

31–41

(2016)Heterogeneousandnon-traditio34Time

to

Integrate

Clinical

and

ResearchInformaticsScience

Translational

Medicine

2012

Vol

4

Issue

162162fs41Integration

of

clinical

andresearch

informatics

canstreamline

clinical

research,

patient

care,

and

the

building

of

a

learning

health

care

system.EHRsaredominatedbyunstructurednarrativedatathatarenot

available

for

research

orquality

improvement

efforts.Clinical

research

databases

—which

contain

well-defined

andstructureddata—arecreatedindependently,andclinically

relevantdatawithintheseresearchdatabasesarenotavailable

for

purposes

ofclinical

care.A

meaningfully

integrated

approach

to

clinical

and

research

data

informaticsisneededtopromoteimprovedhealthoutcomes

andmore

rational

allocation

ofhealth

care

resources.TimetoIntegrateClinicaland35TheElectronic

Medical

Records

and

Genomics

(eMERGE)

NetworkGenetics

in

medicine

15:

761(2013)The

Electronic

Medical

Records

and

Genomics

Network

is

a

National

Human

Genome

Research

Institute–funded

consortium

engaged

in

the

development

of

methods

and

best

practices

for

using

the

electronic

medical

record

as

atool

for

genomic

research.The

network

has

played

a

major

role

in

validating

the

concept

thatclinical

data

derived

from

electronic

medical

records

can

be

used

successfully

for

genomic

research.Current

work

isadvancing

knowledge

inmultiple

disciplines

at

the

intersection

of

genomics

and

healthcare

informatics,

particularly

for

electronic

phenotyping,

genomewide

association

studies,genomic

medicine

implementation,

and

the

ethical

and

regulatory

issues

associated

with

genomics

research

and

returning

results

to

study

participants.TheElectronicMedicalRecords36A

vision

and

a

prescription

forbig

data–enabled

medicineNATUREIMMUNOLOGY

16:

435

(2015)

Genetic,environmentalandsocioeconomic

factors

render

humanity

remarkably

diverse.‘-Omic’andsensortechnologiespermitthe

captureofthisdiversitywithunprecedented

precision.Leveragingthesetechnologiesinclinicaldecision

makingwillhelptobringaboutthelong-heralded

personalization

of

medicine.Avisionandaprescriptionfo37Big

data–enabledmedicineNATURE

IMMUNOLOGY

16:

435

(2015)Bigdata–enabledmedicine38From

Big

Data

to

Intelligent

MedicineData

qualificationand digitizationData

annotation

andknowledge

formationSimulation

and

mathematic

modelingPrecise

andsmart

actionFromBigDatatoIntelligentM39From

Big

Data

to

Intelligent

MedicineData

qualificationand digitizationData

annotation

andknowledge

formationSimulation

and

mathematic

modelingPrecise

andsmart

actionFromBigDatatoIntelligentM40由大數(shù)據(jù)到智能醫(yī)學(xué)課件41Knowledge

management

systemA

knowledgemanagementsystemisdefinedasa

tool

that

selectively

provides

information

relevant

to

a

specific

to

the

characteristics

or

circumstances

of

a

clinicalsituation

but

which

requires

human

interpretation

for

direct

applicationpatient.Electronic

KMSs

includeinformation

retrieval

tools

and

knowledge

resources

that

consist

of

distilled

primary

literature

onevidence-based

practicesKnowledgemanagementsystemAk42Clinical

decision

support

systemA

clinical

decision

support

system

is

defined

asany

electronic

system

designed

to

aid

directly

inclinical

decisionmaking,in

which

characteristicsof

individualpatients

are

usedto

generate

patient-

specific

assessments

or

recommendations

that

are

then

presented

toclinicians

for

consideration.ElectronicCDSSsincludealerts,reminders,order

sets,drug-dosagecalculations,andcare-summary

dashboardsthatprovideperformancefeedbackon

quality

indicators

or

benchmarks.Clinicaldecisionsupportsyst43From

Big

Data

to

Intelligent

MedicineData

qualificationand digitizationData

annotation

andknowledge

formationSimulation

and

mathematic

modelingPrecise

andsmart

actionFromBigDatatoIntelligentM44Digital

liver

and

digital

manFederalregulatorshopecomputer

modeling

can

identify

drugsthatdamagetheliver

before

they

doharmDRUG-INDUCED

LIVER

INJURY

is

theleadingcauseofacuteliverfailure—andthe

single

greatest

reason

the

U.S.Food

andDrug

Administration

refuses

to

approve

adrug

or

pullsadrugfrommarket..TheFDAseemsto

agree

on

the

potentialtobuild

predictive

computermodelswhichcouldidentifyliver

toxicityproblemsearlyinthedrugdevelopment

process.Digitalliveranddigitalman45Clinical

decision

support

systemA

clinical

decision

support

system

is

defined

asany

electronic

system

designed

to

aid

directly

inclinical

decisionmaking,in

which

characteristicsof

individualpatients

are

usedto

generate

patient-

specific

assessments

or

recommendations

that

are

then

presented

toclinicians

for

consideration.ElectronicCDSSsincludealerts,reminders,order

sets,drug-dosagecalculations,andcare-summary

dashboardsthatprovideperformancefeedbackon

quality

indicators

or

benchmarks.Clinicaldecisionsupportsyst46Metabolomicsindrugdiscovery

and

precision

medicineNATURE

REVIEWS

DRUG

DISCOVERY

15

:473

,

2016

Metabolomicsisanemerging‘omics’scienceinvolvingthecomprehensivecharacterizationofmetabolitesandmetabolismin

biologicalsystems.Recentadvancesinmetabolomicstechnologiesare

leading

to

a

growing

number

of

mainstream

biomedical

applications.

Inparticular,metabolomicsisincreasinglybeingusedtodiagnosedisease,understanddiseasemechanisms,identifynoveldrugtargets,

customizedrugtreatmentsandmonitortherapeuticoutcomes.This

Reviewdiscussessomeofthelatesttechnologicaladvancesin

metabolomics,focusingontheapplicationofmetabolomicstowards

uncoveringtheunderlyingcausesofcomplexdiseases(suchas

atherosclerosis,

cancer

and

diabetes),the

growing

role

of

metabolomics

in

drug

discoveryandits

potential

effecton

precision

medicine.Metabolomicsindrugdiscovery47Metabolites

play

a

central

part

in

disease

developmentMetabolitesplayacentralpar48A

decisiontreeformetabolite-baseddrugdiscovery

anddevelopmentAdecisiontreeformetabolite49iKnifeMass

spectrometry-linked

intelligent

surgical

devicesiKnifecan

distinguish

cancer

and

normal

tissue

in

2

seconds

by

analyzing the

smell.NATURE

REVIEWS

GASTROENTEROLOGY

&

HEPATOLOGY

12

:459,2015iKnifeMassspectrometry-linked50iKnifeiKnife51iPad幫助外科醫(yī)生更好的完成肝臟手術(shù)德國Bremen的一位外科醫(yī)生在一臺(tái)iPad和虛擬現(xiàn)實(shí)軟件的幫助下,完成了一次肝臟手術(shù)。iPad的攝像頭將實(shí)時(shí)的肝臟拍下來,并且會(huì)層疊在虛擬的3D模型上。通過iPad查看肝臟中各種構(gòu)造,這樣可以更好的完成手術(shù)並計(jì)算肝臟部分是否能提供充足的供血,評估剩下的器官能否維持患者的生命。iPad幫助外科醫(yī)生更好的完成肝臟手術(shù)德國Bremen的一位52由大數(shù)據(jù)到智能醫(yī)學(xué)課件53智能醫(yī)療系統(tǒng)電腦醫(yī)生智能醫(yī)院智能醫(yī)聯(lián)網(wǎng)智能醫(yī)療系統(tǒng)電腦醫(yī)生54IBM

Watson

IBM

Watson’s

cognitive

computing

capabilities

has

been

growing

throughout

2014,followingthepublicly

disclosed

launch

ofitsWatson

Genomics

project

and

a

relationship

with

the

New

York

Genome

Center.

More

recently,

ithas

publicized

collaborations

with

theCleveland

Clinic

and

the

Mayo

Clinic.

The

Watson

Genomics

project

aims

tosignificantly

shorten

theweek

or

more

it

currently

takes

bioinformaticians

toexamine

a

patient’sunique

molecular

profile

and

identify

drugs

for

his

or

her

individual

treatment.IBMWatson IBMWatson’scognit55IBM

Watson

answersquestionsposed

in

natural

language,processes

Big

Data

to

uncover

new

patterns

and

learns

from

each

interaction.IBMWatsonanswersquestionsp56IBM

Wants

toLoadDoctor

Watsonto

Your

SmartphoneIBM

hasinvestedintoa

genetic

testingservices

laboratory

inabid

to

give

Watson,

its

self-learning

computing

system

that

can

be

controlled

by

human

voice,

the

ability

to

answer

questions

a

user

may

have

about

their

personal

health.TheinvestmentmakesPathwayGenomicsCorp.

oneofthebestcapitalizedhealthcarestartups,with

$80

million

raised

total,according

to

IBM.IBMWantstoLoadDoctorWatso57智能醫(yī)療系統(tǒng)電腦醫(yī)生智能醫(yī)院智能醫(yī)聯(lián)網(wǎng)智能醫(yī)療系統(tǒng)電腦醫(yī)生58More

data-driven

digital

hospitalsEden

Estopace

|

2015-01-02Againstthebackdropofaglobaleconomythatisstill

struggling,healthcarecostisrisinganywhereintheworld,

whiledemandfor

better

health

outcomesis

also

increasing.ResearchfirmIDCpredictsthatoperationalefficiencyin

thehealthcaresystemwillbecomesocriticalthatby2016,

25percentof

hospitals

will

be

budgetingfor

a

data-driven

digital

hospital

strategy.“Aswe

know,

hospitalsare

inthemiddle

of

aprofoundtransformationandacrosstheglobewecanseealotof

modernizationinitiativesthatareaimedataccommodating

theevolvingroleofhospitalsinthehealthsystem,”said

SilviaPiai,ResearchManageratIDC,atarecentIDCHealth

Insights

webinar.Moredata-drivendigitalhospi59Transcutaneous

monitoringNATURE

COMMUNICATIONS

|

5:4779

|

DOI:10.1038/ncomms5779Transcutaneousmonitoring60Airstrip

TechnologiesRemotecontinuousvitalsign

monitoring

via

theiPhone.Thissoftwaredeliversreal-timedataabout

the

vital

signs(including

bloodpressure,heartrhythmand

rate,bloodoxygenlevel,andbody

temperature)ofanypatientwhois

inahospitalintensivecareunittoa

doctor’s

or

nurse’ssmart

phoneScience

translationalmedicine

2:16cm4

(2010)AirstripTechnologiesRemoteco61由大數(shù)據(jù)到智能醫(yī)學(xué)課件62智能醫(yī)療系統(tǒng)電腦醫(yī)生智能醫(yī)院智能醫(yī)聯(lián)網(wǎng)智能醫(yī)療系統(tǒng)電腦醫(yī)生63

Remote

clinics

and

education

centerLarge-scalehospitalCommunityhealth

servicescenterHouseholdsNew

model

of

health

care

services

Science

330:759

(2010)Remoteclinicsandeduca64河南智能醫(yī)聯(lián)網(wǎng)河南智能醫(yī)聯(lián)網(wǎng)65河南智能醫(yī)聯(lián)網(wǎng)省中心省村人省遠(yuǎn)程醫(yī)療協(xié)同平臺(tái)國家遠(yuǎn)程醫(yī)療監(jiān)管與服務(wù)中心遠(yuǎn)程急救服務(wù)點(diǎn)遠(yuǎn)程醫(yī)療網(wǎng)絡(luò)視訊設(shè)備衛(wèi)生信息平臺(tái)急救平臺(tái)市18家/個(gè)+++鄉(xiāng)/50000+國家中心縣醫(yī)院鄉(xiāng)/鎮(zhèn)/村家庭/個(gè)人縣118省醫(yī)院市醫(yī)院市醫(yī)院二級(jí)分中心

二期:14Q2數(shù)據(jù)中心四期:15H2大數(shù)據(jù)、IMS

、雙活一期:2011年118個(gè)遠(yuǎn)程點(diǎn)雙活數(shù)據(jù)中心規(guī)劃:覆蓋基層、健康管理網(wǎng)絡(luò)醫(yī)院大數(shù)據(jù)合平臺(tái)融規(guī)劃:網(wǎng)絡(luò)醫(yī)院、遠(yuǎn)程門診三期:15H118地市分中心五期:16大數(shù)據(jù)二期、雙活完善業(yè)務(wù)上跨省覆蓋、技術(shù)上4K/VR應(yīng)用、體征監(jiān)測/移動(dòng)終端…河南智能醫(yī)聯(lián)網(wǎng)省中心省村人省遠(yuǎn)程醫(yī)療協(xié)同平臺(tái)國家遠(yuǎn)程醫(yī)療監(jiān)管66中國智能醫(yī)聯(lián)網(wǎng)國家遠(yuǎn)程醫(yī)療監(jiān)管與服務(wù)中心省市遠(yuǎn)程醫(yī)療網(wǎng)絡(luò)家庭社區(qū)大醫(yī)院研究機(jī)構(gòu)與產(chǎn)業(yè)中國智能醫(yī)聯(lián)網(wǎng)國家遠(yuǎn)程醫(yī)療監(jiān)管與服務(wù)中心省市遠(yuǎn)程醫(yī)療網(wǎng)絡(luò)家67EnvironmentGenotype

PhenotypeMolecular

Profiling

Mobile

Sensor

and

App

Clinical

PhenotypePersonal

BigData

PopulationBigData

DataMining

Simulation(CDSS)Data

Safety

Regulation

EthicSocioeconomicIntelligentMedicine

Computer

Doctor

Intelligent

Hospital

Intelligent

medical

NetworkFive

Circles

of Intelligent

MedicineEnvironmentGenotypePhenoty68謝謝謝謝69由大數(shù)據(jù)到智能醫(yī)學(xué)由大數(shù)據(jù)到智能醫(yī)學(xué)70Translational

MedicineTwo

strategic

requirement

Changeofmedicalmodel

Health

care

reformThe

engine

and

bridge

from

big

data

to

intelligent

medicineTranslationalMedicineTwostra71From

bench

to

bedsideFrom

big

data

to

intelligent

medicineGenomic

medicineTranslational

MedicineDigital

medicineBig

dataFrombenchtobedsideGenomicm72Intelligent

Medicine5P MedicinePredictive

medicine Preventive

medicine

Personalized

medicine Precision

medicineParticipatory medicineIntelligentMedicine5P Medicin73Intelligent

medicineRight

personRight

timeRight

treatmentRight

healthcareIntelligentmedicineRightpers74Big DataBig Data75Nature

498:

255

(2013)Nature498:255(2013)76THEBIG

CHALLENGES

OF

BIG

DATAAs

they

grapple

with

increasinglylarge

data

sets,

biologists

andcomputer

scientists

uncork

new

bottlenecks.Biologists

are

joining

thebig-data

club.With

the

advent

ofhigh-throughput

genomics,

life

scientists

are

starting

to

grapplewith

massive

data

sets,

encountering

challengeswith

handling,

processing

andmoving

informationthat

were

once

the

domain

of

astronomers

and

high-energyphysicists.Nature

498:

255

(2013)THEBIGCHALLENGESOFBIGDATA77Biomedical

big

dataBiological

dataMedical

dataReal

time

physiological

and

pathological

dateBiomedicalbigdataBiological78BiologicalDataBiologicalData79Standardizing

experimentalprotocolsCurrent

Opinion

inBiotechnology

19:354-359(2008)Systems

biology

aims

at

understanding

thebehavior

of

biologicalnetworks

by

mathematicalmodeling

basedon

experimentaldata.The

procedures

of

data

generation

are

insufficiently

documented

and

data

processing

is

arbitrary.Standardization

at

multiple

levelsis

essential.One

of

thekey

issues

isto

obtain

highly

reproducible

quantitative

data

for

mathematical

modeling.Standardizingexperimentalpro80Standardizationof

hypothesis-driven

research

insystems

biologyCurrent

Opinion

in

Biotechnology

19:354-359(2008)Standardizationofhypothesis-81Integration

of

complexmultidimensional dataNature

452:553

(2008)Integrationof complexmultid82OmicsGenomics

(

metagenomics

)Epigenomics

(

Rnomics

)TranscriptomicsProteomicsMetabolomicsInteractomicsPhenomicsOmicsGenomics(metagenomics)83Microbiome-wide

association

studies

link

dynamic

microbial

consortia

to

diseaseN

AT

U

R

E

5

3

5

9

4

2016

RapidadvancesinDNAsequencing,metabolomics,proteomicsand

computational

tools

are

dramatically

increasing

accessto

the

microbiome

andidentification

of

itslinks

with

disease.

In

particular,

time-series

studiesand

multiple

molecular

perspectives

are

facilitatingmicrobiome-wide

associationstudies,whichareanalogoustogenome-wideassociationstudies.

Earlyfindingspointtoactionableoutcomesofmicrobiome-wideassociationstudies,although

their

clinical

applicationhas

yet

to

be

approved.

Anappreciationofthe

complexityofinteractions

among

the

microbiome

and

the

host’s

diet,chemistry

and

health,as

well

asdetermining

the

frequency

of

observationsthat

are

needed

to

capture

and

integratethis

dynamic

interface,

is

paramount

for

developingprecision

diagnostics

and

therapies

that

arebased

on

the

microbiome.Microbiome-wideassociationst84Developing

a

microbial

Global

Positioning

System

to

stratifyindividuals

and

to

guide

their

treatmentDevelopingamicrobialGlobal85RnomicssnRNAsnoRNAmicroRNAlncRNACircular

RNARnomicssnRNA86OmicsGenomicsEpigenomicsTranscriptomicsProteomicsMetabolomicsInteractomicsPhenomicsOmicsGenomics87Maximizing

thepotential

of

themouseasa

modelorganismNature

Review/Genetics

10:372

(2009)Maximizingthepotentialofth88The

biological

organization

ofthe

'-omics'Thebiologicalorganizationof89由大數(shù)據(jù)到智能醫(yī)學(xué)課件90Globalviews

of

the

human

interactomeGlobalviewsofthehumaninte91Medical DataClinicaldataStructured

medical

recordMedicalimageCohord

research

dataClinical

research

dataMedical DataClinicaldataCohor92Real

time

physiological

andpathological

date

from

in

situ sensorsWearable

devicesFilmChipsImplantable

chipsRealtimephysiologicalandpa93Fully

integrated

wearable

sensor

arrays(FISA

)for

multiplexed

perspiration

analysisN

AT

U

R

E

529:

5

0

9

(2016)Fullyintegratedwearablesens94Sensing

a

shift

in

health

careScience

TranslationalMedicine

7

(283),

283rv3,2015Sensingashiftinhealthcare95由大數(shù)據(jù)到智能醫(yī)學(xué)課件96Epidermal

ElectronicsScience

333,

838

(2011)EpidermalElectronicsScience397LifeWatch獲得遠(yuǎn)程患者可粘貼監(jiān)測設(shè)備FDA許可瑞士遠(yuǎn)程心臟監(jiān)測公司LifeWatch獲得其LifeWatch

VSP(生命體征貼片)的FDA許可,是遠(yuǎn)程患者監(jiān)測貼片。

LifeWatch尺寸小、易粘貼、穿戴舒適,與現(xiàn)在使用的為數(shù)眾多的有線設(shè)備相比,限制更少。VSP可用于醫(yī)院、救護(hù)車、護(hù)理和家庭環(huán)境。用一個(gè)舒適得多且非常便宜的方式替代多個(gè)硬件設(shè)備。同時(shí)設(shè)備還可定制參數(shù)、設(shè)定提醒,可配置數(shù)據(jù)并兼容EMR系統(tǒng)。LifeWatch是一次性粘貼帶,包含檢測心電圖、心率、呼吸頻率、體溫、血氧飽和度和運(yùn)動(dòng)的傳感器。他還包含電池,可通過設(shè)備連續(xù)收集數(shù)據(jù)五到七天。針對VSP系統(tǒng)的許可還包括無線連接血壓腕帶和用于處理及傳輸數(shù)據(jù)的安卓app。app還能監(jiān)測患者,同時(shí)在發(fā)生異常生命體征時(shí)發(fā)出警報(bào)。LifeWatch獲得遠(yuǎn)程患者可粘貼監(jiān)測設(shè)備FDA許可瑞士98Soft,

stretchable,

fully

implantable

chipsSoft,stretchable,fullyimpla99Soft,

stretchable,

fully

implantable

miniaturized

chipsSoft,stretchable,fullyimpla100由大數(shù)據(jù)到智能醫(yī)學(xué)課件101mHealth

taking

centerstageScienceTranslational

Medicine

7

(283),

283rv3,

2015mHealthtakingcenterstage102Heterogeneous

and

non-traditional

sources

of big

dataGenomics

Proteomics

Bioinformatics

14:

31–41

(2016)Heterogeneousandnon-traditio103Time

to

Integrate

Clinical

and

ResearchInformaticsScience

Translational

Medicine

2012

Vol

4

Issue

162162fs41Integration

of

clinical

andresearch

informatics

canstreamline

clinical

research,

patient

care,

and

the

building

of

a

learning

health

care

system.EHRsaredominatedbyunstructurednarrativedatathatarenot

available

for

research

orquality

improvement

efforts.Clinical

research

databases

—which

contain

well-defined

andstructureddata—arecreatedindependently,andclinically

relevantdatawithintheseresearchdatabasesarenotavailable

for

purposes

ofclinical

care.A

meaningfully

integrated

approach

to

clinical

and

research

data

informaticsisneededtopromoteimprovedhealthoutcomes

andmore

rational

allocation

ofhealth

care

resources.TimetoIntegrateClinicaland104TheElectronic

Medical

Records

and

Genomics

(eMERGE)

NetworkGenetics

in

medicine

15:

761(2013)The

Electronic

Medical

Records

and

Genomics

Network

is

a

National

Human

Genome

Research

Institute–funded

consortium

engaged

in

the

development

of

methods

and

best

practices

for

using

the

electronic

medical

record

as

atool

for

genomic

research.The

network

has

played

a

major

role

in

validating

the

concept

thatclinical

data

derived

from

electronic

medical

records

can

be

used

successfully

for

genomic

research.Current

work

isadvancing

knowledge

inmultiple

disciplines

at

the

intersection

of

genomics

and

healthcare

informatics,

particularly

for

electronic

phenotyping,

genomewide

association

studies,genomic

medicine

implementation,

and

the

ethical

and

regulatory

issues

associated

with

genomics

research

and

returning

results

to

study

participants.TheElectronicMedicalRecords105

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論