網(wǎng)絡(luò)分析的一種改進(jìn)回路分析法_第1頁
網(wǎng)絡(luò)分析的一種改進(jìn)回路分析法_第2頁
網(wǎng)絡(luò)分析的一種改進(jìn)回路分析法_第3頁
網(wǎng)絡(luò)分析的一種改進(jìn)回路分析法_第4頁
網(wǎng)絡(luò)分析的一種改進(jìn)回路分析法_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

254期200412月淮北煤炭師范學(xué)院學(xué)報(bào)JOurnaIOfHuaibeiCOaIIndustryTeachersCOIIegeVOI.25 NO.4Dec.2004網(wǎng)絡(luò)分析的一種改進(jìn)的回路分析法姜文彬1,李淮江1,254期200412月淮北煤炭師范學(xué)院學(xué)報(bào)JOurnaIOfHuaibeiCOaIIndustryTeachersCOIIegeVOI.25 NO.4Dec.2004網(wǎng)絡(luò)分析的一種改進(jìn)的回路分析法姜文彬1,李淮江1,2(1.淮北煤炭師范學(xué)院物理系,淮北235000;2.中國科學(xué)技術(shù)大學(xué)精密機(jī)械與精密儀器工程系,合肥230027)摘要:回路分析法是電路分析的一種基本方法.但是基本的回路分析法不能用于處理含有電流源支路的回路分析問題.本文導(dǎo)出了一種改進(jìn)的回路方程,提出了改進(jìn)的回路法.這種方法減少了回路方程的維數(shù)和求解回路方程計(jì)算.該方法適用于計(jì)算機(jī)輔助電路分析(CACA.:回路分析法;電流源;改進(jìn)回路法;計(jì)算機(jī)輔助電路分析號TM133文獻(xiàn)標(biāo)識碼:A文章編號:1672-7177200404-0023-05引言電路分析中,用來系統(tǒng)地列寫網(wǎng)絡(luò)方程的方法有節(jié)點(diǎn)分析法和回路分析法等.但是,在應(yīng)用基本(標(biāo)準(zhǔn))節(jié)點(diǎn)法處理電壓源(獨(dú)立和受控)時,將遇到支路電導(dǎo)矩陣相應(yīng)的對角線元素出現(xiàn)無窮大的困難,導(dǎo)致節(jié)點(diǎn)方程無解.應(yīng)用基本(標(biāo)準(zhǔn))回路法處理電流源(獨(dú)立和受控)時,會出現(xiàn)支路電阻矩陣相應(yīng)的對角線元素出現(xiàn)無窮大的問題,導(dǎo)致回路方程無解.通過引入附加支路電流或支路電壓變量,有人提出了改進(jìn)節(jié)點(diǎn)法和混合分析法等[1,2].為了減少網(wǎng)絡(luò)方程的維數(shù),后來又有人提出了緊湊改進(jìn)節(jié)點(diǎn)法[3和割集方程的改進(jìn)形式等.本文分析了一般電阻支路[4和電流源(獨(dú)立或受控)(VCR)的不同特點(diǎn),導(dǎo)出了一種改進(jìn)的回路方程,提出了改進(jìn)的回路法.當(dāng)電路中含有電流源支路時,它不僅可以避免支路電阻矩陣相應(yīng)的對角線元素出現(xiàn)無窮大的問題,從而使回路方程有解;而且減少了求解回路方程的維數(shù),從而減少了電路分析的工作量.當(dāng)電路中不含電流源支路時,它即可轉(zhuǎn)化為基本回路法.1改進(jìn)的回路分析法由于任意兩電流源的串聯(lián)違背KCL,只有在兩個電流源的電流相等且方向一致時,串聯(lián)才是允許的,此時其電路中的電流為其任一個電流源的電流,因此,討論僅含有電流源的回路是沒有實(shí)際意義的.因此,假設(shè)所討論的電路中,每個獨(dú)立回路最多含有一個電流源(獨(dú)立或受控),且電流源支路數(shù)少于獨(dú)立回路數(shù).和標(biāo)準(zhǔn)回路法一樣,改進(jìn)回路法也是建立在基本回路電流(連支電流)為一組完備的獨(dú)立電流變量基礎(chǔ)上的,必須先在電路的拓?fù)鋱D中選定一個樹,然后確定基本回路即單連支回路.所不同的是,在選樹時應(yīng)將電流源支路均選為連支.并且將連支集合劃分為兩個子集合即電阻連支集合和電流源連支集合.含有電阻連支的基本回路稱為電阻基本回路,含有電流源連支的基本回路稱為電流源基本回路.于是,將電路基本回路集合也相應(yīng)地劃分為兩個子集合即電阻基本回路集合和電流源基本回路集合.這種劃分方法是由于一般的電阻支路的VCR和電流源支路VCR的不同性質(zhì)所引起的.對于一般的電阻支路,假設(shè)該支路的獨(dú)立電壓源和獨(dú)立電流源的方向與此支路的關(guān)聯(lián)參考方向一致,VCR為2Ubrk=RkIbrk-RkIrsk+Ursk(1)Ursk分別為該支路的獨(dú)式中,Ibrk分別為第k條電阻支路的電壓和電流,Rk為該支路的電阻,Irsk和Ubrk立電流源的電流和獨(dú)立電壓源的電壓.式(1)表明該支路中的電壓Ubrk和電流Ibrk是由該支路本身的性質(zhì)所約束的,若其中一個已知,則由該式可確定另一個.因此,可選定其一作為變量.而獨(dú)立電流源支路的VCR為收稿日期:2004-04-27作者簡介:姜文彬(1939-),男,碭山人,教授,.淮北煤炭師范學(xué)院學(xué)報(bào)(自然科學(xué)版)2004年24IbskIsk給定值Ubsk=任意值(由外部電路決定)(2)顯然,此時Ibsk不應(yīng)考慮為未知的變量.而受控電流源VCCSCCCS)支路的電流是受其他支路的電壓或電流控制的,即Ibsj=gUbi或(3)Ibsj=!Ibi式中,j!i,g為轉(zhuǎn)移電導(dǎo),!為轉(zhuǎn)移電流比,它們均為常數(shù).由于此時第j條支路的電流由第i條支路電壓淮北煤炭師范學(xué)院學(xué)報(bào)(自然科學(xué)版)2004年24IbskIsk給定值Ubsk=任意值(由外部電路決定)(2)顯然,此時Ibsk不應(yīng)考慮為未知的變量.而受控電流源VCCSCCCS)支路的電流是受其他支路的電壓或電流控制的,即Ibsj=gUbi或(3)Ibsj=!Ibi式中,j!i,g為轉(zhuǎn)移電導(dǎo),!為轉(zhuǎn)移電流比,它們均為常數(shù).由于此時第j條支路的電流由第i條支路電壓或電流決定,所以Ibsj也不應(yīng)考慮為獨(dú)立的變量.顯然,若考慮到電流源支路的這些特點(diǎn),回路方程的維數(shù)即可降低,于是,可以導(dǎo)出降維后的改進(jìn)回路方程.為了簡化分析,若電路中含有受控源,先將它暫時看作獨(dú)立源,然后,再將它的影響折算到相應(yīng)的部分.假設(shè)所分析的電路中有I個節(jié)點(diǎn),b條支路,則該電路中含有m=b-I+l個獨(dú)立回路(即連支數(shù)).若支路中含有s個電流源支路,則有(b-s)個電阻支路,且應(yīng)滿足sm.若選定了一個樹,其樹支數(shù)為t=Il連支數(shù)為m.于是可將支路集合分成樹支和連支兩個子集合.這里規(guī)定支路的排序?yàn)橄葮渲?后連支;而且在連支中,先電阻連支,后電流源連支.基本回路的排序與所含連支的排序一一對應(yīng).對于m個基本回路,可列mKVL方程以矩陣形式表示為(4)Ubs]T,其中子向量Ubr稱為電阻支路電壓向量,其維BUb=0式中,Ub為支路電壓向量,其維數(shù)為b.令Ub=[Ubr數(shù)為(b-s;子向量Ubs稱為電流源支路電壓向量,其維數(shù)為s.矩陣B為基本回路矩陣,其維數(shù)為m>b.矩陣B可分解為四個子矩陣,即BBlll2(5)B=B2lB22其中,子矩陣Bll為電阻基本回路與電阻支路的相關(guān)聯(lián)的矩陣簡稱關(guān)聯(lián)矩陣,其維數(shù)為(m-s)>(b-s);Bl2為電阻基本回路與電流源支路的關(guān)聯(lián)矩陣,其維數(shù)為(B2l為電流源基本回路與電阻支路的m-s)>s;關(guān)聯(lián)矩陣,其維數(shù)為s>(b-s;B22為電流源基本回路與電流源支路的關(guān)聯(lián)矩陣,其維數(shù)為s>s.可以看出,按照上述排序關(guān)系得到四個子矩陣中,Bl2=0(零矩陣),B22=l(分塊矩陣的運(yùn)算規(guī)則,可得矩陣,于是,由式4及式5,利用BllUbr=0(6)B2lUbr+Ubs=0KCL方程以矩陣形式表示,則得BTIl=Ib(7)Ibr為電阻支路電流向量,其維數(shù)為式中,Ib為支路電流向量,其維數(shù)為b.令I(lǐng)b=[IbrIbsT,其中子向量(b-s;Ibs為電流源支路電流向量,其維數(shù)為s.Il為基本回路電流連支電流向量,其維數(shù)為m.令I(lǐng)l=[IlrIlsT,其中子向量Ilr為電阻基本回路電流向量,其維數(shù)為(m-s);Ils為電流源基本回路電流向量,其維數(shù)為于是由式7,并利用B0,BT=l可得Tl2s.22BTI+BI=ITlllr 2lIls=Ibsls br(8)然后利用電阻支路的VCR即式(l),將(b-s)個電阻支路的VCR以矩陣表示,可得Ubr=RrIbr-RrIrs+Urs(9)式中Rr為支路電阻矩陣,其維數(shù)為(b-s)>(b-s);Irs(Urs為電阻支路的電流源電壓源向量,其維數(shù)均為(b-s).為了簡化計(jì)算,可將Bll和B2l進(jìn)一步分解.為此將Ubr(Ibr)的樹支電壓(電流)和連支電壓(電流)分離,得陣Ubr=[UbrtUbrl]T,Ibr=[IbrtIbrlT,其中Ibrt(Ubrt為t維向量,Ibrl(Ubrl為(m-s維向量.于是可將子矩Bll和B2l分別分解為Bll=[BlltBlll],B2l=[B2lt B2ll](l0)B2ll的維數(shù)分別為s>ts>式中,Bllt和Blll的維數(shù)分別為(m-s)>t和(m-s)>(m-s;B2lt和4期25(m-s.并且矩陣),!21l=O(零矩陣),于是式(6)被化簡為!11l=1(!11"bt+"brl=O!214期25(m-s.并且矩陣),!21l=O(零矩陣),于是式(6)被化簡為!11l=1(!11"bt+"brl=O!21"bt+"bs=O(11)再利用!=[!TT,則式8被化簡為T!T]T,!T=[!T!T11 11t 11l 21 21t 21l#+!#=#!TT11tlr 21tbs brt(12)#lr=#brl#rs=[#rst再令"rsl]T,其中#rst("rst)為t維向量,#rsl("rsl)為(m-s維向量.并將矩陣#rsl]T,"rs=["rst$r分解為$Ort$r=(13)O$rl式中,$rt為樹支電阻矩陣,其維數(shù)為t>t;$rl為連支電阻矩陣,其維數(shù)為(m-s)>(m-s,于是可將式(9)進(jìn)一步分解為"bt=$r#brt-$r#rt+"st"bl=$r#brl-$r#rl+"sl(14)將式14和式12代入式11,并令"st="rst-$rt#rst+$rt!Tt#bs(15)(16)21"sl="rsl-$rl#rsl則得(17)(18)s個未知量"bs,!11t$rt!T11tlr+$rl#lr+!11t"st+"sl=O#!21t$rt!T11tlr+!21t"st+"bs=O#式17稱為改進(jìn)的回路方程,它含有(m-s個未知量#lr,共有(m-s個方程.式18含有共有s個方程.式17和式18構(gòu)成了混合形式的網(wǎng)絡(luò)方程.考慮到獨(dú)立源和受控源對電路的不同作用(影響),將二者分離,“c表示受控源部分,以下標(biāo)“e表示獨(dú)立源部分.獨(dú)立源為電路的輸入(激勵),移到式(17)的右邊,則由式(15)-(17)得(19)(2O)(21)(22)(23)(24)(25)(26)"ste=$rt#rste-"rste-$rt!T#21tbse"sle=$rl#rsle-"rsle"stc="rstc-$rt#rstc+$rt!T#bsc21t"slc="slc-$rl#rslc"se=!11t"ste+"sle"sc=!11t"stc+"slc$l=11t$rt!T$l#lr+"sc="se11t+$rl改進(jìn)回路法應(yīng)用實(shí)例1a所示,1b為該電路的拓?fù)鋱D.拓?fù)鋱D中已選定了一個樹,如圖中的實(shí)線所示,虛線為連支,在圖b中支路用其編號表示,在支路旁標(biāo)出的數(shù)字為支路編號,基本回路的編號與所含連支的編號相同.31.a電路圖;b拓?fù)鋱D淮北煤炭師范學(xué)院學(xué)報(bào)(自然科學(xué)版)2004年261得,節(jié)點(diǎn)數(shù)I6,支路數(shù)b10,電流源支路數(shù)s2,故樹支數(shù)t5,基本回路數(shù)連支數(shù))m=5,8;樹支集合為bt={1,2,3,4,5};連支集合bl={6,7,8,9,10},其中電阻連支集合為brl={6,7,8},電流源連支集合為bsl={9,10},且受控源在先,獨(dú)立源在后.基本回路集合為l6={6,3,2},l7=l10={10,2,1淮北煤炭師范學(xué)院學(xué)報(bào)(自然科學(xué)版)2004年261得,節(jié)點(diǎn)數(shù)I6,支路數(shù)b10,電流源支路數(shù)s2,故樹支數(shù)t5,基本回路數(shù)連支數(shù))m=5,8;樹支集合為bt={1,2,3,4,5};連支集合bl={6,7,8,9,10},其中電阻連支集合為brl={6,7,8},電流源連支集合為bsl={9,10},且受控源在先,獨(dú)立源在后.基本回路集合為l6={6,3,2},l7=l10={10,2,1},且回路方向取與所含連支方向一致.故有電阻支路{7,5,3,4},l8={8,1,2,5},l9={9,4,3},集合br={1,2,3,4,5,6,7,8},電流源支路集合bs={9,10};電阻基本回路集合l8},電流源基本lr={l6,l7,回路集合ls={l9,l10}.于是可將基本回路矩陣分解為6100110-1210-12013-1103-1040104-1050-11500701070080018009000910100001001100600!11t=!11l=!12=!21t=!21l=!22=電阻支路中的電流源向量"rs和電壓源向量#rs分別為"rs="rst "rslT=020T 0-20T#rsleT2TT="rse00-2TT=#rse0010#rs=#rst#rslT=0其中"rse="rste"rsleT,#rse=#rste電流源支路電流向量為"bs=I9I10T=4I61T=4Il61T"bse=01T,"bsc=4Il60T$rl,其中$rt和支路電阻矩陣$r為$rdiag$rt$rl分別為010000000000010000020020002000$rl=0 ,$rt=201由式19)26,經(jīng)計(jì)算得#ste=1#stc=0-1060T,#sle=006T0-4Il6-8Il60T,#slc=0#se=-1$l"lr=368T,#sc=4Il6-12Il60T-10"lr-16-1"lr0-14"lrT"lr=Il6Il7Il8T=0.08257由式12及"l6,經(jīng)計(jì)算得2.39449T1.57798"brt=I1"brl=I6"bs=I9I2I3I4I5T=1.394490.81651T-1.311931.165141.24770I7I8T=0.082571.577982.39449TI10T=0.330281.00000T由式14及式112式,經(jīng)計(jì)算得#brt=U1#brl=U6#bs=U9U2U3U4U5T=1.394491.000001.16514-3.504600.81651TU7U8T=0.165143.15596-1.21102TU10T=-2.339460.39449T結(jié)論本文基于一般電阻支路和電流源(獨(dú)立或受控)支路的不同性質(zhì)(VCR),在基本回路分析法的基礎(chǔ)上導(dǎo)出了一種改進(jìn)的回路方程,以及改進(jìn)回路法,并給出了該方法的應(yīng)用實(shí)例.給出的實(shí)例表明這種方法是有效44期27而易行的.可以看出,該方法適用于計(jì)算機(jī)輔助電路分析(CACA),并且不難推廣到處理含有電容元件或4期27而易行的.可以看出,該方法適用于計(jì)算機(jī)輔助電路分析(CACA),并且不難推廣到處理含有電容元件或(和)電感元件的線性電路的分析問題.參考文獻(xiàn):[1]HoChung-wen,AIbertERuehIi,PierceABrennan.ModifiednodaIapproachtonetworkanaIysis[J].IEEETransonCircuitsandSystems,1975,CAS-22(6):504-509.2]熊炳.電路分析導(dǎo)論M.上海:同濟(jì)大學(xué),1990.3]徐守堂,.緊湊改進(jìn)節(jié)點(diǎn)法J.電子科技大學(xué)學(xué)報(bào),1989,183:225234.4].電路分析基礎(chǔ)M].北京:高等教育,1992.AModifiedLoopAnalysisMethodforNetworkAnalysisJIANGWen-bin1,LIHuai-jiang1,2(1.DepartmentofPhysics,HuaibeiCoalIndustryTeachersCollege,235000,Huaibei,Anhui,China;2.DepartmentofPrecisionMachineryandPrecisionInstrumentationEngineering,UniuersityofScienceandTechnologyofChina,230027,Hefei,Anhui,China)Abstract:TheIoopanaIysismethodisafundamentaImethodofcircuitanaIysis.ButfundamentaIIoopanaIysismethodcannotbeusedforapproachingtheIoopanaIysisprobIemsoftheIoopcontainingcurrentsourcebranch.AmodifiedIoopeguationsaredeveIopedandthemodifiedIoopanaIysismethodisproposedinthispaper.Usingthemethod,thedimensionofIoopeguationsandthecaIcuIationtosoIveforIoopeguationsarereduced.ItissuitabIeforco

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論