廣西北海市2022年中考五模數(shù)學(xué)試題含解析_第1頁
廣西北海市2022年中考五模數(shù)學(xué)試題含解析_第2頁
廣西北海市2022年中考五模數(shù)學(xué)試題含解析_第3頁
廣西北海市2022年中考五模數(shù)學(xué)試題含解析_第4頁
廣西北海市2022年中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20172.如圖,PB切⊙O于點(diǎn)B,PO交⊙O于點(diǎn)E,延長PO交⊙O于點(diǎn)A,連結(jié)AB,⊙O的半徑OD⊥AB于點(diǎn)C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.23.某品牌的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時(shí)間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘4.估計(jì)5﹣的值應(yīng)在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間5.如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.36.等式組的解集在下列數(shù)軸上表示正確的是(

).A.

B.C.

D.7.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<08.關(guān)于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形9.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A,B,C.現(xiàn)有下面四個(gè)推斷:①拋物線開口向下;②當(dāng)x=-2時(shí),y取最大值;③當(dāng)m<4時(shí),關(guān)于x的一元二次方程ax2+bx+c=m必有兩個(gè)不相等的實(shí)數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點(diǎn)A,C,當(dāng)kx+c>ax2+bx+c時(shí),x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④10.如圖,一個(gè)梯子AB長2.5米,頂端A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5米,梯子滑動(dòng)后停在DE的位置上,測(cè)得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點(diǎn)C是折疊后的上一動(dòng)點(diǎn),連接并延長BC交⊙O于點(diǎn)D,點(diǎn)E是CD的中點(diǎn),連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請(qǐng)將正確答案的序號(hào)填在橫線上)12.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點(diǎn),將Rt△ABC沿CD折疊,使點(diǎn)B落在AC邊上的B′處,則∠ADB′等于_____.13.若關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,則m的值是_________.14.用一張扇形紙片圍成一個(gè)圓錐的側(cè)面(接縫處不計(jì)),若這個(gè)扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個(gè)圓錐的母線長為_____cm.15.如圖,已知直線l:y=x,過點(diǎn)(2,0)作x軸的垂線交直線l于點(diǎn)N,過點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過點(diǎn)M1作x軸的垂線交直線l于N1,過點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2,……;按此做法繼續(xù)下去,則點(diǎn)M2000的坐標(biāo)為______________.16.函數(shù)y=中,自變量x的取值范圍是_____.17.因式分解:=三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點(diǎn)D,DE⊥AB于點(diǎn)E.(1)依題意補(bǔ)全圖形;(2)猜想AE與CD的數(shù)量關(guān)系,并證明.19.(5分)如圖,已知點(diǎn)、在直線上,且,于點(diǎn),且,以為直徑在的左側(cè)作半圓,于,且.若半圓上有一點(diǎn),則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當(dāng)半圓與的邊相切時(shí),求平移距離.20.(8分)我市某中學(xué)舉行“中國夢(mèng)?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.21.(10分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.22.(10分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點(diǎn)G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.23.(12分)如圖,AB∥CD,△EFG的頂點(diǎn)F,G分別落在直線AB,CD上,GE交AB于點(diǎn)H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數(shù).24.(14分)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長的直角三角形的周長。

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點(diǎn)睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.2、C【解析】

連接OB,根據(jù)切線的性質(zhì)與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據(jù)等腰三角形的性質(zhì)與三角函數(shù)得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點(diǎn)B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點(diǎn)睛】本題主要考查切線的性質(zhì)與銳角的三角函數(shù),解此題的關(guān)鍵在于利用切線的性質(zhì)得到相關(guān)線段與角度的值,再根據(jù)圓和等腰三角形的性質(zhì)求解即可.3、C【解析】

先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時(shí)間是:20-7=13,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.4、C【解析】

先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計(jì)解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應(yīng)在7和8之間,故選C.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算出無理數(shù)的大?。?、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點(diǎn)睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.6、B【解析】【分析】分別求出每一個(gè)不等式的解集,然后在數(shù)軸上表示出每個(gè)不等式的解集,對(duì)比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點(diǎn)睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.7、C【解析】

根據(jù)絕對(duì)值的性質(zhì):一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),1的絕對(duì)值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【詳解】因?yàn)閨-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點(diǎn)睛】絕對(duì)值規(guī)律總結(jié):一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),1的絕對(duì)值是1.8、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結(jié)論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點(diǎn)睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關(guān)鍵.9、B【解析】

結(jié)合函數(shù)圖象,利用二次函數(shù)的對(duì)稱性,恰當(dāng)使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當(dāng)x=-2時(shí),y取最大值,則由于點(diǎn)A和點(diǎn)B到x=-2的距離相等,這兩點(diǎn)的縱坐標(biāo)應(yīng)該相等,但是圖中點(diǎn)A和點(diǎn)B的縱坐標(biāo)顯然不相等,所以②錯(cuò)誤,從而排除掉A和D;

剩下的選項(xiàng)中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經(jīng)過點(diǎn)A,C,當(dāng)kx+c>ax2+bx+c時(shí),x的取值范圍是x<-4或x>0,從而④錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對(duì)稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復(fù)雜的二次函數(shù)綜合選擇題.10、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個(gè)直角三角形中,運(yùn)用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點(diǎn):勾股定理的應(yīng)用.二、填空題(共7小題,每小題3分,滿分21分)11、①②【解析】

根據(jù)折疊的性質(zhì)可知,結(jié)合垂徑定理、三角形的性質(zhì)、同圓或等圓中圓周角與圓心的性質(zhì)等可以判斷①②是否正確,EO的最小值問題是個(gè)難點(diǎn),這是一個(gè)動(dòng)點(diǎn)問題,只要把握住E在什么軌跡上運(yùn)動(dòng),便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.

由題知:沿著弦AB折疊,正好經(jīng)過圓心O

∴OF=OA=OB

∴∠AOF=∠BOF=60°

∴∠AOB=120°

∴∠ACB=120°(同弧所對(duì)圓周角相等)

∠D=∠AOB=60°(同弧所對(duì)的圓周角是圓心角的一半)

∴∠ACD=180°-∠ACB=60°

∴△ACD是等邊三角形(有兩個(gè)角是60°的三角形是等邊三角形)

故,①②正確

下面研究問題EO的最小值是否是1

如圖2,連接AE和EF

∵△ACD是等邊三角形,E是CD中點(diǎn)

∴AE⊥BD(三線合一)

又∵OF⊥AB

∴F是AB中點(diǎn)

即,EF是△ABE斜邊中線

∴AF=EF=BF

即,E點(diǎn)在以AB為直徑的圓上運(yùn)動(dòng).

所以,如圖3,當(dāng)E、O、F在同一直線時(shí),OE長度最小

此時(shí),AE=EF,AE⊥EF

∵⊙O的半徑是2,即OA=2,OF=1

∴AF=(勾股定理)

∴OE=EF-OF=AF-OF=-1

所以,③不正確

綜上所述:①②正確,③不正確.

故答案是:①②.【點(diǎn)睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了垂徑定理.12、40°.【解析】

∵將Rt△ABC沿CD折疊,使點(diǎn)B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.13、m=-【解析】

根據(jù)題意可以得到△=0,從而可以求得m的值.【詳解】∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴△=,解得:.故答案為.14、1【解析】

設(shè)這個(gè)圓錐的母線長為xcm,利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設(shè)這個(gè)圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個(gè)圓錐的母線長為1cm.故答案為1.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.15、(24001,0)【解析】分析:根據(jù)直線l的解析式求出,從而得到根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出然后表示出與的關(guān)系,再根據(jù)點(diǎn)在x軸上,即可求出點(diǎn)M2000的坐標(biāo)詳解:∵直線l:∴∵NM⊥x軸,M1N⊥直線l,∴∴同理,…,所以,點(diǎn)的坐標(biāo)為點(diǎn)M2000的坐標(biāo)為(24001,0).故答案為:(24001,0).點(diǎn)睛:考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)點(diǎn)的坐標(biāo)求線段的長度,以及如何根據(jù)線段的長度求出點(diǎn)的坐標(biāo),注意各相關(guān)知識(shí)的綜合應(yīng)用.16、x≠﹣.【解析】

該函數(shù)是分式,分式有意義的條件是分母不等于1,故分母x﹣1≠1,解得x的范圍.【詳解】解:根據(jù)分式有意義的條件得:2x+3≠1解得:故答案為【點(diǎn)睛】本題考查了函數(shù)自變量取值范圍的求法.要使得本題函數(shù)式子有意義,必須滿足分母不等于1.17、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點(diǎn)睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進(jìn)行二次分解,注意分解要徹底.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析.【解析】

(1)根據(jù)題意畫出圖形即可;(2)利用等腰三角形的性質(zhì)得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據(jù)角平分線性質(zhì)得CD=DE,從而得到AE=CD.【詳解】解:(1)如圖:(2)AE與CD的數(shù)量關(guān)系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),角平分線的性質(zhì),解題關(guān)鍵在于根據(jù)題意作輔助線.19、(1);(2)①;②【解析】

(1)由圖可知當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),AF最大,根據(jù)勾股定理即可求出此時(shí)AF的長;(2)①連接EG、EH.根據(jù)的長為π可求得∠GEH=60°,可得△GEH是等邊三角形,根據(jù)等邊三角形的三個(gè)角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根據(jù)平角的定義即可求出∠A'GO的度數(shù);②分C'A'與半圓相切和B'A'與半圓相切兩種情況進(jìn)行討論,利用切線的性質(zhì)、勾股定理、切斜長定理等知識(shí)進(jìn)行解答即可得出答案.【詳解】解:(1)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),AF最大,AF最大=AD==,故答案為:;(2)①連接、.∵,∴.∵,∴是等邊三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②當(dāng)切半圓于時(shí),連接,則.∵,∴切半圓于點(diǎn),∴.∵,∴,∴平移距離為.當(dāng)切半圓于時(shí),連接并延長于點(diǎn),∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【點(diǎn)睛】本題主要考查了弧長公式、勾股定理、切線的性質(zhì),作出過切點(diǎn)的半徑構(gòu)造出直角三角形是解決此題的關(guān)鍵.20、(1)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些(3)初中代表隊(duì)選手成績較為穩(wěn)定【解析】解:(1)填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績好些.∵兩個(gè)隊(duì)的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊(duì)選手成績較為穩(wěn)定.(1)根據(jù)成績表加以計(jì)算可補(bǔ)全統(tǒng)計(jì)表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計(jì)意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計(jì)意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.21、;【解析】

先根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計(jì)算可得.【詳解】原式=÷(﹣)===,當(dāng)a=2cos30°+1=2×+1=+1,b=tan45°=1時(shí),原式=.【點(diǎn)睛】本題主要考查分式的化簡求值,在化簡的過程中要注意運(yùn)算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進(jìn)行約分,注意運(yùn)算的結(jié)果要化成最簡分式或整式,也考查了特殊銳角的三角函數(shù)值.22、(1)見解析;(2)BG=BC+CG=1.【解析】

(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得AE:AB=DF:DE,根據(jù)有兩邊對(duì)應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)相似三角形的預(yù)備定理得到△EDF∽△GCF,再根據(jù)相似的性質(zhì)即可求得CG的長,那么BG的長也就不難得到.【詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論