版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標(biāo)系內(nèi),點(diǎn)P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖,在平面直角坐標(biāo)系xOy中,△由△繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)3.某商店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣了80元,其中一個(gè)贏利60%,另一個(gè)虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺4.小麗只帶2元和5元的兩種面額的鈔票(數(shù)量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.45.若a是一元二次方程x2﹣x﹣1=0的一個(gè)根,則求代數(shù)式a3﹣2a+1的值時(shí)需用到的數(shù)學(xué)方法是()A.待定系數(shù)法B.配方C.降次D.消元6.已知點(diǎn)A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.7.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20188.《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,它對(duì)我國古代后世的數(shù)學(xué)家產(chǎn)生了深遠(yuǎn)的影響,該書中記載了一個(gè)問題,大意是:有幾個(gè)人一起去買一件物品,每人出8元,多3元;每人出7元,少4元,問有多少人?該物品價(jià)幾何?設(shè)有x人,物品價(jià)值y元,則所列方程組正確的是()A. B.C. D.9.若一個(gè)正多邊形的每個(gè)內(nèi)角為150°,則這個(gè)正多邊形的邊數(shù)是()A.12 B.11 C.10 D.910.如圖,AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,若⊙O的半徑為5,AB=8,則CD的長是()A.2B.3C.4D.5二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.中國的陸地面積約為9600000km2,把9600000用科學(xué)記數(shù)法表示為.12.如圖,AB=AC,要使△ABE≌△ACD,應(yīng)添加的條件是(添加一個(gè)條件即可).13.如圖,某數(shù)學(xué)興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)),則所得的扇形ABD的面積為_____.14.某航空公司規(guī)定,乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)滿足如圖所示的函數(shù)圖象,那么每位乘客最多可免費(fèi)攜帶____kg的行李.15.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時(shí),四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號(hào))16.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點(diǎn)P是斜邊AB上的點(diǎn),過點(diǎn)P作⊙C的一條切線PQ(點(diǎn)Q是切點(diǎn)),則線段PQ的最小值為_____.三、解答題(共8題,共72分)17.(8分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.(1)求二次函數(shù)的表達(dá)式;(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形?若存在.請(qǐng)求出點(diǎn)P的坐標(biāo);(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.18.(8分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點(diǎn)G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.19.(8分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點(diǎn)D、E,得到DE?。?)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.20.(8分)試探究:小張?jiān)跀?shù)學(xué)實(shí)踐活動(dòng)中,畫了一個(gè)△ABC,∠ACB=90°,BC=1,AC=2,再以點(diǎn)B為圓心,BC為半徑畫弧交AB于點(diǎn)D,然后以A為圓心,AD長為半徑畫弧交AC于點(diǎn)E,如圖1,則AE=;此時(shí)小張發(fā)現(xiàn)AE2=AC?EC,請(qǐng)同學(xué)們驗(yàn)證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點(diǎn)E,構(gòu)造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應(yīng)用遷移:利用上面的結(jié)論,求半徑為2的圓內(nèi)接正十邊形的邊長.21.(8分)“食品安全”受到全社會(huì)的廣泛關(guān)注,我區(qū)兼善中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為°;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若對(duì)食品安全知識(shí)達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機(jī)抽取2人參加食品安全知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.22.(10分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數(shù)解.23.(12分)“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習(xí)俗.某食品廠為了解市民對(duì)去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).請(qǐng)根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民人數(shù)是人;(2)將圖①②補(bǔ)充完整;(直接補(bǔ)填在圖中)(3)求圖②中表示“A”的圓心角的度數(shù);(4)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D湯圓的人數(shù).24.張老師在黑板上布置了一道題:計(jì)算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時(shí)的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對(duì)?并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
判斷出P的橫縱坐標(biāo)的符號(hào),即可判斷出點(diǎn)P所在的相應(yīng)象限.【詳解】當(dāng)a為正數(shù)的時(shí)候,a+3一定為正數(shù),所以點(diǎn)P可能在第一象限,一定不在第四象限,
當(dāng)a為負(fù)數(shù)的時(shí)候,a+3可能為正數(shù),也可能為負(fù)數(shù),所以點(diǎn)P可能在第二象限,也可能在第三象限,
故選D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)的知識(shí)點(diǎn),解題的關(guān)鍵是由a的取值判斷出相應(yīng)的象限.2、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對(duì)應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對(duì)應(yīng)點(diǎn)的連線CC′、AA′的垂直平分線過點(diǎn)(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(diǎn)(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標(biāo)是P(1,-1)故選B.考點(diǎn):坐標(biāo)與圖形變化—旋轉(zhuǎn).3、A【解析】試題分析:第一個(gè)的進(jìn)價(jià)為:80÷(1+60%)=50元,第二個(gè)的進(jìn)價(jià)為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點(diǎn):一元一次方程的應(yīng)用4、C【解析】分析:先根據(jù)題意列出二元一次方程,再根據(jù)x,y都是非負(fù)整數(shù)可求得x,y的值.詳解:解:設(shè)2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負(fù)整數(shù),∴或或,∴付款的方式共有3種.故選C.點(diǎn)睛:本題考查二元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再根據(jù)實(shí)際意義求解.5、C【解析】
根據(jù)一元二次方程的解的定義即可求出答案.【詳解】由題意可知:a2-a-1=0,
∴a2-a=1,
或a2-1=a
∴a3-2a+1
=a3-a-a+1
=a(a2-1)-(a-1)
=a2-a+1
=1+1
=2
故選:C.【點(diǎn)睛】本題考查了一元二次方程的解,解題的關(guān)鍵是正確理解一元二次方程的解的定義.6、B【解析】
先分別求出每一個(gè)不等式的解集,再根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:根據(jù)題意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式組的解集為x>1,故選:B.【點(diǎn)睛】本題主要考查解一元一次不等式組,關(guān)鍵要掌握解一元一次不等式的方法,牢記確定不等式組解集方法.7、A【解析】
根據(jù)去括號(hào)法則、絕對(duì)值的性質(zhì)、零指數(shù)冪的計(jì)算法則及負(fù)整數(shù)指數(shù)冪的計(jì)算法則依次計(jì)算各項(xiàng)即可解答.【詳解】選項(xiàng)A,﹣(﹣2018)=2018,故選項(xiàng)A正確;選項(xiàng)B,|﹣2018|=2018,故選項(xiàng)B錯(cuò)誤;選項(xiàng)C,20180=1,故選項(xiàng)C錯(cuò)誤;選項(xiàng)D,2018﹣1=,故選項(xiàng)D錯(cuò)誤.故選A.【點(diǎn)睛】本題去括號(hào)法則、絕對(duì)值的性質(zhì)、零指數(shù)冪的計(jì)算法則及負(fù)整數(shù)指數(shù)冪的計(jì)算法則,熟知去括號(hào)法則、絕對(duì)值的性質(zhì)、零指數(shù)冪及負(fù)整數(shù)指數(shù)冪的計(jì)算法則是解決問題的關(guān)鍵.8、C【解析】根據(jù)題意相等關(guān)系:①8×人數(shù)-3=物品價(jià)值,②7×人數(shù)+4=物品價(jià)值,可列方程組:,故選C.點(diǎn)睛:本題考查了二元一次方程組的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系.9、A【解析】
根據(jù)正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ),得到這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個(gè)正多邊形的每個(gè)內(nèi)角為150°,∴這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,∴這個(gè)正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).10、A【解析】試題分析:已知AB是⊙O的弦,半徑OC⊥AB于點(diǎn)D,由垂徑定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故選A.考點(diǎn):垂徑定理;勾股定理.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、9.6×1.【解析】
將9600000用科學(xué)記數(shù)法表示為9.6×1.故答案為9.6×1.12、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).13、25【解析】試題解析:由題意14、2【解析】
設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可.【詳解】解:設(shè)乘客所攜帶行李的重量x(kg)與運(yùn)費(fèi)y(元)之間的函數(shù)關(guān)系式為y=kx+b,由題意,得,解得,,則y=30x-1.
當(dāng)y=0時(shí),
30x-1=0,
解得:x=2.
故答案為:2.【點(diǎn)睛】本題考查了運(yùn)用待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,由函數(shù)值求自變量的值的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.15、②③④【解析】試題解析:根據(jù)已知條件不能推出OA=OD,∴①錯(cuò)誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,16、.【解析】
當(dāng)PC⊥AB時(shí),線段PQ最短;連接CP、CQ,根據(jù)勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據(jù)勾股定理得:PQ2=CP2﹣CQ2,∴當(dāng)PC⊥AB時(shí),線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點(diǎn)睛】本題考查了切線的性質(zhì)以及勾股定理的運(yùn)用;注意掌握輔助線的作法,注意當(dāng)PC⊥AB時(shí),線段PQ最短是關(guān)鍵.三、解答題(共8題,共72分)17、(1)二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時(shí),△MNB面積最大,最大面積是1.此時(shí)點(diǎn)N在對(duì)稱軸上x軸上方2個(gè)單位處或點(diǎn)N在對(duì)稱軸上x軸下方2個(gè)單位處.【解析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達(dá)式;(2)先求出點(diǎn)B的坐標(biāo),再根據(jù)勾股定理求得BC的長,當(dāng)△PBC為等腰三角形時(shí)分三種情況進(jìn)行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點(diǎn)P的坐標(biāo);(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時(shí)點(diǎn)M在D點(diǎn),點(diǎn)N在對(duì)稱軸上x軸上方2個(gè)單位處或點(diǎn)N在對(duì)稱軸上x軸下方2個(gè)單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達(dá)式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點(diǎn)P在y軸上,當(dāng)△PBC為等腰三角形時(shí)分三種情況進(jìn)行討論:如圖1,①當(dāng)CP=CB時(shí),PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當(dāng)PB=PC時(shí),OP=OB=3,∴P3(0,-3);③當(dāng)BP=BC時(shí),∵OC=OB=3∴此時(shí)P與O重合,∴P4(0,0);綜上所述,點(diǎn)P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當(dāng)點(diǎn)M出發(fā)1秒到達(dá)D點(diǎn)時(shí),△MNB面積最大,最大面積是1.此時(shí)點(diǎn)N在對(duì)稱軸上x軸上方2個(gè)單位處或點(diǎn)N在對(duì)稱軸上x軸下方2個(gè)單位處.18、(1)見解析;(2)BG=BC+CG=1.【解析】
(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得AE:AB=DF:DE,根據(jù)有兩邊對(duì)應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)相似三角形的預(yù)備定理得到△EDF∽△GCF,再根據(jù)相似的性質(zhì)即可求得CG的長,那么BG的長也就不難得到.【詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長為4,∴ED=2,CG=6,∴BG=BC+CG=1.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.19、(1)證明見解析;(2)1-π.【解析】
(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點(diǎn)睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質(zhì)和判定等知識(shí)點(diǎn),能求出CF的長是解答此題的關(guān)鍵.20、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】
嘗試探究:根據(jù)勾股定理計(jì)算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質(zhì)即可解決問題;(3)如圖,過點(diǎn)F作FM⊥AC交AC于點(diǎn)M,根據(jù)cos∠A=,求出AM、AF即可;應(yīng)用遷移:利用(3)中結(jié)論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點(diǎn)F作FM⊥AC交AC于點(diǎn)M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應(yīng)用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內(nèi)接正十邊形,∴如圖,當(dāng)點(diǎn)A是圓內(nèi)接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時(shí),設(shè)AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內(nèi)接正十邊形的邊長為.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會(huì)利用數(shù)形結(jié)合的思想思考問題,屬于中考?jí)狠S題.21、(1)60,1°.(2)補(bǔ)圖見解析;(3)【解析】
(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問卷調(diào)查的學(xué)生共有30÷50%=60(人),扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補(bǔ)圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結(jié)果,恰好抽到1個(gè)男生和1個(gè)女生的有12種情況,∴恰好抽到1個(gè)男生和1個(gè)女生的概率為=.【點(diǎn)睛】此題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹狀圖法求概率,讀懂題意,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;概率=所求情況數(shù)與總情況數(shù)之比.22、,1.【解析】
首先化簡(﹣a)÷(1+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷藏出售轉(zhuǎn)讓合同模板
- 采購除塵設(shè)備合同模板
- 配方分紅合同模板
- 2024年度產(chǎn)品加工協(xié)作協(xié)議范例版
- 2024年私人車庫銷售協(xié)議模板版
- 抖音供貨協(xié)議合同模板
- 花蕾購銷合同模板
- 水電合同模板 版
- 小程序運(yùn)營維護(hù)合同模板
- 新車合同模板
- 上頜竇提升學(xué)習(xí)課件
- 急性短暫性精神病性障礙
- 行政事業(yè)單位內(nèi)部控制業(yè)務(wù)流程圖
- 微生物與人類健康課件
- 三級(jí)餐廳服務(wù)員考試復(fù)習(xí)備考題庫-下(多選、判斷題部分)
- 家用電器產(chǎn)品特殊要求匯編
- 焦作市卷煙材料有限公司年產(chǎn)80億支煙用濾棒及配套用5000萬平方米紙板及3000萬個(gè)紙箱項(xiàng)目(一期)環(huán)境影響報(bào)告
- 人教版培智一年級(jí)上生活適應(yīng)教案
- 洗潔精質(zhì)量安全管理手冊(cè)優(yōu)質(zhì)資料
- 英語六級(jí)(CET-6)模擬考試題與答案解析匯編
- 數(shù)據(jù)挖掘(第2版)PPT全套完整教學(xué)課件
評(píng)論
0/150
提交評(píng)論