版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023學年(全國市級)湖北省孝感市安陸市中考一模數(shù)學測試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.去年12月24日全國大約有1230000人參加研究生招生考試,1230000這個數(shù)用科學記數(shù)法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1052.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±13.下列方程中,兩根之和為2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=04.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)5.下列立體圖形中,主視圖是三角形的是()A. B. C. D.6.的相反數(shù)是()A. B.2 C. D.7.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m8.如圖,矩形OABC有兩邊在坐標軸上,點D、E分別為AB、BC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.89.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y210.把多項式ax3﹣2ax2+ax分解因式,結果正確的是()A.a(chǎn)x(x2﹣2x) B.a(chǎn)x2(x﹣2)C.a(chǎn)x(x+1)(x﹣1) D.a(chǎn)x(x﹣1)2二、填空題(共7小題,每小題3分,滿分21分)11.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經(jīng)過點(1,2),則b的值為_____.12.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.13.方程=的解是____.14.如果一個正多邊形每一個內(nèi)角都等于144°,那么這個正多邊形的邊數(shù)是____.15.如圖,點A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點,連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.16.小明擲一枚均勻的骰子,骰子的六個面上分別刻有1,2,3,4,5,6點,得到的點數(shù)為奇數(shù)的概率是.17.某中學數(shù)學教研組有25名教師,將他們分成三組,在38~45(歲)組內(nèi)有8名教師,那么這個小組的頻率是_______。三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點D,E,DG⊥AC于點G,交AB的延長線于點F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2519.(5分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.20.(8分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標.21.(10分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉(zhuǎn)180°,得到新的拋物線C′.(1)求拋物線C的函數(shù)表達式;(2)若拋物線C′與拋物線C在y軸的右側(cè)有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.22.(10分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.23.(12分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.24.(14分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結論;如果不是,請說明理由
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【答案解析】分析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:1230000這個數(shù)用科學記數(shù)法可以表示為故選A.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.2、C【答案解析】
根據(jù)一元一次方程的定義即可求出答案.【題目詳解】由題意可知:,解得a=?1故選C.【答案點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.3、B【答案解析】
由根與系數(shù)的關系逐項判斷各項方程的兩根之和即可.【題目詳解】在方程x2+2x-3=0中,兩根之和等于-2,故A不符合題意;在方程x2-2x-3=0中,兩根之和等于2,故B符合題意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,則該方程無實數(shù)根,故C不符合題意;在方程4x2-2x-3=0中,兩根之和等于-,故D不符合題意,故選B.【答案點睛】本題主要考查根與系數(shù)的關系,掌握一元二次方程的兩根之和等于-、兩根之積等于是解題的關鍵.4、D【答案解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【題目詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【答案點睛】本題考查了切線的性質(zhì),坐標與圖形性質(zhì),解題的關鍵是掌握切線的性質(zhì)和坐標計算.5、A【答案解析】
考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【題目詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【答案點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看6、B【答案解析】
根據(jù)相反數(shù)的性質(zhì)可得結果.【題目詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【答案點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關鍵.7、D【答案解析】
根據(jù)三角形的中位線定理即可得到結果.【題目詳解】解:由題意得AB=2DE=20cm,故選D.【答案點睛】本題考查的是三角形的中位線,解答本題的關鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.8、B【答案解析】
根據(jù)反比例函數(shù)的圖象和性質(zhì)結合矩形和三角形面積解答.【題目詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【答案點睛】此題重點考查學生對反比例函數(shù)圖象和性質(zhì)的理解,熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關鍵.9、D【答案解析】測試卷分析:反比例函數(shù)y=-的圖象位于二、四象限,在每一象限內(nèi),y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數(shù)圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數(shù)的性質(zhì).10、D【答案解析】
先提取公因式ax,再根據(jù)完全平方公式把x2﹣2x+1繼續(xù)分解即可.【題目詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.【答案點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.二、填空題(共7小題,每小題3分,滿分21分)11、3【答案解析】
把點(1,2)代入解析式解答即可.【題目詳解】解:把點(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【答案點睛】本題考查的是一次函數(shù)的圖象點的關系,關鍵是把點(1,2)代入解析式解答.12、2.【答案解析】
由tan∠CBD==設CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【題目詳解】解:在Rt△BCD中,∵tan∠CBD==,
∴設CD=3a、BC=4a,
則BD=AD=5a,
∴AC=AD+CD=5a+3a=8a,
在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,
解得:a=或a=-(舍),
則BD=5a=2,
故答案為2.【答案點睛】本題考查線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),勾股定理的應用,解題關鍵是熟記性質(zhì)與定理并準確識圖.13、x=1【答案解析】
觀察可得方程最簡公分母為x(x?1),去分母,轉(zhuǎn)化為整式方程求解,結果要檢驗.【題目詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗:把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【答案點睛】解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程,具體方法是方程兩邊同時乘以最簡公分母,在此過程中有可能會產(chǎn)生增根,增根是轉(zhuǎn)化后整式的根,不是原方程的根,因此要注意檢驗.14、1【答案解析】
設正多邊形的邊數(shù)為n,然后根據(jù)多邊形的內(nèi)角和公式列方程求解即可.【題目詳解】解:設正多邊形的邊數(shù)為n,由題意得,=144°,解得n=1.故答案為1.【答案點睛】本題考查了多邊形的內(nèi)角與外角,熟記公式并準確列出方程是解題的關鍵.15、.【答案解析】
設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【題目詳解】設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【答案點睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數(shù)解決問題.16、.【答案解析】
根據(jù)題意可知,擲一次骰子有6個可能結果,而點數(shù)為奇數(shù)的結果有3個,所以點數(shù)為奇數(shù)的概率為.考點:概率公式.17、0.1【答案解析】
根據(jù)頻率的求法:頻率=,即可求解.【題目詳解】解:根據(jù)題意,38-45歲組內(nèi)的教師有8名,
即頻數(shù)為8,而總數(shù)為25;
故這個小組的頻率是為=0.1;
故答案為0.1.【答案點睛】本題考查頻率、頻數(shù)的關系,屬于基礎題,關鍵是掌握頻率的求法:頻率=.三、解答題(共7小題,滿分69分)18、(3)證明見測試卷解析;(3)3.【答案解析】測試卷分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2測試卷解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點:3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.19、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【答案解析】
(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【題目詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【答案點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關鍵.20、(1)y=﹣2x+1;(2)點P的坐標為(﹣,0)或(,0).【答案解析】
(1)把A的坐標代入可求出m,即可求出反比例函數(shù)解析式,把B點的坐標代入反比例函數(shù)解析式,即可求出n,把A,B的坐標代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據(jù)三角形的面積公式結合S△ABP=3,即可得出,解之即可得出結論.【題目詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點A(﹣,2),∴m=﹣1.∴雙曲線的表達式為y=﹣.∵點B(n,﹣1)在雙曲線y=﹣上,∴點B的坐標為(1,﹣1).∵直線y=kx+b經(jīng)過點A(﹣,2),B(1,﹣1),∴,解得∴直線的表達式為y=﹣2x+1;(2)當y=﹣2x+1=0時,x=,∴點C(,0).設點P的坐標為(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴點P的坐標為(﹣,0)或(,0).【答案點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式以及三角形的面積,解題的關鍵是:(1)根據(jù)點的坐標利用待定系數(shù)法求出函數(shù)的解析式;(2)根據(jù)三角形的面積公式以及S△ABP=3,得出.21、(1);(2)2<m<;(1)m=6或m=﹣1.【答案解析】
(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側(cè)有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數(shù)法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數(shù)法即可解決問題.【題目詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數(shù)表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側(cè)有兩個不同的公共點,則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時,四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時,四邊形PMP′N是正方形.22、(1)(2)【答案解析】
(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據(jù)對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據(jù)梯形面積公式即可求出梯形COBD的面積.【題目詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.23、(1);(2);(2)小貝的說法正確,理由見解析,.【答案解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【題目詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度公寓樓租賃合同模板(含裝修設計、施工及家具家電配置)3篇
- 二零二五年度熱處理廢棄物處理與環(huán)保合同2篇
- 二零二五年度新能源科技公司股份轉(zhuǎn)讓合同3篇
- 二零二五年度車輛租賃平臺開發(fā)與運營合同3篇
- 2025年度農(nóng)村水井承包合同與水資源管理信息化建設協(xié)議
- 2025年度年度電子科技公司轉(zhuǎn)讓協(xié)議書3篇
- 2025解除買賣合同的通知書
- 2025年度離婚后房產(chǎn)分割及使用權協(xié)議3篇
- 2025年度低壓供用電設備節(jié)能改造與升級合同3篇
- 二零二五年度養(yǎng)生館綠色環(huán)保合作合同協(xié)議3篇
- 工程監(jiān)督中心鉆井液監(jiān)督培訓教材
- 附件1:中國聯(lián)通動環(huán)監(jiān)控系統(tǒng)B接口技術規(guī)范(V3.0)
- 運維人員崗位培訓(通信電源)實操手冊
- 鍋爐車間輸煤機組 PLC電氣控制系統(tǒng)設計
- 專題01《水銀花開的夜晚》 高考語文二輪復習
- 文件簽發(fā)單(標準模版)
- GB/T 9081-2008機動車燃油加油機
- 304不銹鋼焊接熱裂原因及解決方法計劃
- 施工臨時用電安全隱患大全對錯圖示一目了然
- 國家開放大學《經(jīng)濟數(shù)學基礎12》形考作業(yè)1-4
- 工程設計資質(zhì)標準
評論
0/150
提交評論