




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FIXED-INCOMESECURITIESLecture9OptionsonBondsandBondswithEmbeddedOptionsFIXED-INCOMESECURITIES1固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件2固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件3ValueofThree-PeriodOption-FreeBond
C=9,F=100
ValueofThree-PeriodOption-F4CallableBondsandPutableBonds
BondwithEmbeddedOptionsCallablebonds–Issuermayrepurchaseatapre-specifiedcallprice–TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor–Ifitiseffectivelycalled,theinvestorwillhavetoinvestinanotherbondyieldingalowerrate–Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall–Therefore,aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption-freebondExamples–TheUKTreasurybondwithcoupon5.5%andmaturitydate09/10/2012canbecalledinfullorpartfrom09/10/2008onatapriceofpounds100–TheUSTreasurybondwithcoupon7.625%andmaturitydate02/15/2007canbecalledoncoupondatesonly,atapriceof$100,from02/15/2002on–SuchabondissaidtobediscretelycallableCallableBondsandPutableBon5CallableandPutableBonds
InstitutionalAspectsPutablebondholdermayretireatapre-specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo,hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption-freebondCallableandPutableBo6CallableandPutableBonds
Yield-to-WorstYield-to-callYear54.54%Year64.61%Year74.66%Year84.69%Year94.72%Yield-to-worstyear104.74%LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity,fromitsfirstcalldateon–Onecancomputeayield-to-callonallpossiblecalldates–Theyield-to-worstisthelowestoftheyield-to-maturityandallyields-to-callExample–10-yearbondbearinganinterestcouponof5%,discretelycallableafter5yearsandtradingat102–Thereare5possiblecalldatesbeforematurity–Yield-to-worstis4.54%CallableandPutableBonds7CallableBonds
ValuationinaBinomialModel
thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice,andthenrollingthecallablebondvaluetothecurrentperiod.Recursiveprocedure–Pricecash-flowtobediscountedonperiodn-1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn–AndsoonuntilwegetthepricePofthecallablebondCallableBonds
Valuationina8固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件9固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件10ValueofPutablebondValueofPutablebond11固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件12Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess.Thisvalueisknownasthetheoreticalvalue.
Thet-periodspotrateisequaltothegeometricaverageofthecurrentandexpectone-periodspotrates.
AlternativeBinomialValuationApproach
Analternativebutequivalent13consideragainthethree-period,9%option-freebondvaluedwithatwo-periodinterestratetree
consideragainthethree-perio14固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件15固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件16固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件17CallableandPutableBonds
MonteCarloApproachStep1:generatealargenumberofshort-terminterestratepathsStep2:alongeachinterestratepath,thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepathsCallableandPutableBonds
Mon18CallableandPutableBonds
MonteCarloApproach-ExamplePriceacallablebondwithannualcoupon4.57%,maturity10years,redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario?PriceofthebondisaverageoverallpathsP=1/6(100.43+100.55+99.9+99.76+99.68+100.55)=100.14?TheMonteCarlopricingmethodologycanalsobeappliedtothevaluationofallkindsofinterestratesderivativesCallableandPutableBonds
Mon19OptionsonBonds
TerminologyAnoptionisacontractinwhichtheseller(writer)grantsthebuyertherighttopurchasefrom,orsellto,theselleranunderlyingasset(hereabond)ataspecifiedpricewithinaspecifiedperiodoftimeThesellergrantsthisrighttothebuyerinexchangeforacertainsumofmoneycalledtheoptionpriceoroptionpremiumThepriceatwhichtheinstrumentmaybeboughtorsoldiscalledtheexerciseorstrikepriceThedateafterwhichanoptionisvoidiscalledtheexpirationdate–AnAmericanoptionmaybeexercisedanytimeuptoandincludingtheexpirationdate–AEuropeanoptionmaybeexercisedonlyontheexpirationdateOptionsonBonds
TerminologyAn20OptionsonBonds
FactorsthatInfluenceOptionPrices
Currentpriceofunderlyingsecurity–Asthepriceoftheunderlyingbondincreases,thevalueofacalloptionrisesandthevalueofaputoptionfalls?Strikeprice–Call(put)optionsbecomemore(less)valuableastheexercisepricedecreasesTimetoexpiration–ForAmericanoptions,thelongerthetimetoexpiration,thehighertheoptionpricebecauseallexerciseopportunitiesopentotheholderoftheshort-lifeoptionarealsoopentotheholderofthelong-lifeoption?Short-termrisk-freeinterestrate–Priceofcalloptiononbondincreasesandpriceofputoptiononbonddecreasesasshort-terminterestraterises(throughimpactonbondprice)?Expectedvolatilityofyields(orprices)–Astheexpectedvolatilityofyieldsoverthelifeoftheoptionincreases,thepriceoftheoptionwillalsoincreaseOptionsonBonds
Factorsthat21OptionsonBonds
PricingOptionsonlong-termbonds–Interestpaymentsaresimilartodividends–Otherwise,long-termbondsarelikeoptionsonstock:–WecanuseBlack-Scholesasinoptionsondividend-payingequity?Optionsonshort-termbonds–Problem:theyarenotlikeastockbecausetheyquicklyconvergetopar–WecannotdirectlyapplyBlack-Scholes?Othershortcomingsofstandardoptionpricingmodels–Assumptionofaconstantshort-termrateisinappropriateforbondoptions–Assumptionofaconstantvolatilityisalsoinappropriate:asabondmovesclosertomaturity,itspricevolatilitydeclineOptionsonBonds
PricingOption22OptionsonBonds
PricingAsolutiontoavoidtheproblemistoconsideraninterestratemodel,–Thefollowingfigureshowsatreeforthe1-yearrateofinterest(calibratedtothecurrentTS)–Thefigurealsoshowsthevaluesforadiscountbond(par=100)ateachnodeinthetreeOptionsonBonds
PricingAsolu23OptionsonBonds
PricingConsidera2-yearEuropeancallonthis3-yearbondstruckat93.5Startbycomputingthevalueattheendofthetree–Ifbytheendofthe2ndyeartheshort-termratehasrisento7%andthebondistradingat93,theoptionwillexpireworthless–Ifthebondistradingat94(correspondingtoashort-termrateof6%)thecalloptionisworth0.5–Ifthebondistradingat95(short-termrate=5%),thecallisworth1.5WorkingourwaybackwardthetreeOptionsonBonds
PricingConsid24OptionsonBonds
Put-CallParityAssumptionnocouponpaymentsandnoprematureexerciseConsideraportfoliowherewepurchaseonezerocouponbond,oneputEuropeanoption,andsell(write)oneEuropeancalloption(sametimetomaturityTandthesamestrikepriceX)PayoffatdateTOptionsonBonds
Put-CallPari25OptionsonBonds
Put-CallParity–Con’tNomatterwhatstateoftheworldobtainsattheexpirationdate,theportfoliowillbeworthXThus,thepayofffromtheportfolioisrisk-free,andwecandiscountitsvalueattherisk-freeraterWeobtainthecall-putrelationship?ForcouponbondsOptionsonBonds
Put-CallPari26ConvertibleBonds
DefinitionConvertiblesecuritiesareusuallyeitherconvertiblebondsorconvertiblepreferredshareswhicharemostoftenexchangeableintothecommonstockofthecompanyissuingtheconvertiblesecurityBeingdebtorpreferredinstruments,theyhaveanadvantagetothecommonstockincaseofdistressorbankruptcyConvertiblebondsoffertheinvestorthesafetyofafixedincomeinstrumentcoupledwithparticipationintheupsideoftheequitymarketsEssentially,convertiblebondsarebondsthat,attheholder'soption,areconvertibleintoaspecifiednumberofsharesConvertibleBonds
DefinitionCo27ConvertibleBonds
TerminologyConvertiblebonds–Bondholderhasarighttoconvertbondforpre-specifiednumberofshareofcommonstockTerminology–Convertiblepriceisthepriceoftheconvertiblebond–Bondfloororinvestmentvalueisthepriceofthebondifthereisnoconversionoption–Conversionratioisthenumberofsharesthatisexchangedforabond–Conversionvalue=currentsharepricexconversionratio–Conversionpremium=(convertibleprice–conversionvalue)/conversionvalue
ConvertibleBonds
TerminologyC28ConvertibleBonds
ExamplesExample1:–Currentbondprice=$930–Conversionratio:1bond=30sharescommon–Currentstockprice=$25/share–MarketConversionValue=(30shares)x(25)=$750–ConversionPremium=(930–750)/750=180/750=24%?Example2:AXAConvertibleBond–AXAhasissuedinthe€zoneaconvertiblebondpayinga2.5%couponrateandmaturingon01/01/2014;theconversionratiois4.04–On12/13/2001,thecurrentsharepricewas€24.12andthebid-askconvertiblepricewas156.5971/157.5971–Theconversionvaluewasequalto€97.44=4.04x24.12–Theconversionpremiumcalculatedwiththeaskprice157.5971was61.73%=(157.5791-97.44)/97.44–Theconversionofthebondinto4.04sharescanbeexecutedonanydatebeforethematuritydateConvertibleBonds
ExamplesExam29ConvertibleBonds
UsesFortheissuer–Issuingconvertiblebondsenablesafirmtoobtainbetterfinancialconditions–Couponrateofsuchabondisalwayslowertothatofabulletbondwiththesamecharacteristicsintermsofmaturityandcouponfrequency–Thiscomesdirectlyfromtheconversionadvantagewhichisattachedtothisproduct–BesidestheexchangeofbondsforsharesdiminishestheliabilitiesofthefirmissuerandincreasesinthesametimeitsequitysothatitsdebtcapacityisimprovedFortheconvertiblebondholder–Theconvertiblebondisadefensivesecurity,verysensitivetoariseinthesharepriceandprotectivewhenthesharepricedecreases–Ifthesharepriceincreases,theconvertiblepricewillalsoincrease–Whensharepricedecreases,priceofconvertiblenevergetsbelowthebondfloor,i.e.,thepriceofanotherwiseidenticalbulletbondwithnoconversionoptionConvertibleBonds
UsesForthe30ConvertibleBonds
DeterminantsofConvertibleBondPricesConvertiblebondissimilartoanormalcouponbondplusacalloptionontheunderlyingstock
–Withanimportantdifference:theeffectivestrikepriceofthecalloptionwillvarywiththepriceofthebondConvertiblesecuritiesarepricedasafunctionof
–Thepriceoftheunderlyingstock–Expectedfuturevolatilityofequityreturns–Riskfreeinterestrates–Callprovisions–Supplyanddemandforspecificissues–Issue-specificcorporate/Treasuryyieldspread–Expectedvolatilityofinterestratesandspreads?Thus,thereislargeroomforrelativemis-valuationsConvertibleBonds
Determinants31ConvertibleBonds
ConvertibleBondPriceasaFunctionofStockPriceConvertibleBonds
Convertible32ConvertibleBonds
ConvertibleBondPricingModelApopularmethodforpricingconvertiblebondsisthecomponentmodel–Theconvertiblebondisdividedintoastraightbondcomponentandacalloptionontheconversionprice,withstrikepriceequaltothevalueofthestraightbondcomponent–Thefairvalueofthetwocomponentscanbecalculatedwithstandardformulas,suchasthefamousBlack-Scholesvaluationformula.?Thispricingapproach,however,hasseveraldrawbacks–First,separatingtheconvertibleintoabondcomponentandanoptioncomponentreliesonrestrictiveassumptions,suchastheabsenceofembeddedoptions(callabilityandputability,forinstance,areconvertiblebondfeaturesthatcannotbeconsideredintheaboveseparation)–Second,convertiblebondscontainanoptioncomponentwithastochasticstrikepriceequaltothebondpriceConvertibleBonds
Convertible33ConvertibleBonds
ConvertibleBondPricingModelsTheoreticalresearchonconvertiblebondpricingwasinitiatedbyIngersoll(1977)andBrennanandSchwartz(1977),whobothappliedthecontingentclaimsapproachtothevaluationofconvertiblebondsIntheirvaluationmodels,theconvertiblebondpricedependsonthefirmvalueastheunderlyingvariableBrennanandSchwartz(1980)extendtheirmodelbyincludingstochasticinterestrates.ThesemodelsrelyheavilyonthetheoryofstochasticprocessesandrequirearelativelyhighlevelofmathematicalsophisticationConvertibleBonds
Convertible34ConvertibleBonds
BinomialModelThepriceofthestockonlycangouptoagivenvalueordowntoagivenvalueBesides,thereisabond(bankaccount)thatwillpayinterestofrConvertibleBonds
BinomialMod35ConvertibleBonds
BinomialModelWeassumeu(up)>d(down)ForBlackandScholeswewillneedd=1/uForconsistencywealsoneedu>(1+r)>dExample:u=1.25;d=0.80;r=10%ConvertibleBonds
BinomialMod36ConvertibleBonds
BinomialModelBasicmodelthatdescribesasimpleworld.Asthenumberofstepsincreases,itbecomesmorerealisticWewillpriceandhedgeanoption:itappliestoanyotherderivativesecurityKey:wehavethesamenumberofstatesandsecurities(completemarkets)BasisforarbitragepricingConvertibleBonds
BinomialMod37ConvertibleBonds
BinomialModelIntroduceanEuropeancalloption:K=110ItmaturesattheendoftheperiodConvertibleBonds
BinomialMod38ConvertibleBonds
BinomialModelWecanreplicatetheoptionwiththestockandthebondConstructaportfoliothatpaysCuinstateuandCdinstatedThepriceofthatportfoliohastobethesameasthepriceoftheoptionOtherwisetherewillbeanarbitrageopportunityConvertibleBonds
BinomialMod39ConvertibleBonds
BinomialModelWebuysharesandinvestBinthebankTheycanbepositive(buyordeposit)ornegative(shortsellorborrow)Wewantthen,Withsolution,ConvertibleBonds
BinomialMod40ConvertibleBonds
BinomialModelInourexample,wegetforstock:And,forbonds:Thecostoftheportfoliois,ConvertibleBonds
BinomialMod41ConvertibleBonds
BinomialModelThepriceoftheEuropeancallmustbe9.09.Otherwise,thereisanarbitrageopportunity.Ifthepriceislowerthan9.09wewouldbuythecallandshortselltheportfolioIfhigher,theoppositeWehavecomputedthepriceandthehedgesimultaneously:
–Wecanconstructacallbybuyingthestockandborrowing–Shortcall:theoppositeConvertibleBonds
BinomialMod42ConvertibleBonds
BinomialModelRememberthat?And?Substituting,ConvertibleBonds
BinomialMod43ConvertibleBonds
BinomialModelAftersomealgebra,?Observethecoefficients,?Positive?Smallerthanone?AdduptooneLikeaprobability.ConvertibleBonds
BinomialMod44ConvertibleBonds
BinomialModelRewrite?Where?Thiswouldbethepricingof:–Ariskneutralinvestor–Withsubjectiveprobabilitiespand(1-p)ConvertibleBonds
BinomialMod45ConvertibleBonds
BinomialModelSupposethefollowingeconomy,?WeintroduceanEuropeancallwithstrikepriceKthatmaturesinthesecondperiodConvertibleBonds
BinomialMod46ConvertibleBonds
BinomialModelThepriceoftheoptionwillbe:?Thereare“twopaths”thatleadtotheintermediatestate(thatexplainsthe“2”)ConvertibleBonds
BinomialMod47ConvertibleBonds
VolatilityintheBinomialModelConvertibleBonds
Volatilityi48ConvertibleBond
ValuationMethodologyGiventhataconvertiblebondisnothingbutanoptionontheunderlyingstock,weexpecttobeabletousethebinomialmodeltopriceitAteachnode,wetest–a.whetherconversionisoptimal–b.whetherthepositionoftheissuercanbeimprovedbycallingthebonds?Itisadynamicprocedure:max(min(Q1,Q2),Q3)),where–Q1=valuegivenbytherollback(neitherconvertednorcalledback)–Q2=callprice–Q3=valueofstocksifconversiontakesplaceConvertibleBond
ValuationMet49ConvertibleBond
ExampleExample
–Weassumethattheunderlyingstockpricetradesat$50.00witha30%annualvolatility–Weconsideraconvertiblebondwitha9monthsmaturity,aconversionratioof20–Theconvertiblebondhasa$1,000.00facevalue,a4%annualcoupon–Wefurtherassumethattherisk-freerateisa(continuouslycompounded)10%,whiletheyieldtomaturityonstraightbondsissuedbythesamecompanyisa(continuouslycompounded)15%–Wealsoassumethatthecallpriceis$1,100.00–Usea3periodsbinomialmodel(t/n=3months,or?year)ConvertibleBond
ExampleExampl50ConvertibleBond
ExampleWehave?Actually(continuouslycompoundedrate)ConvertibleBond
ExampleWehav51ConvertibleBond
ExampleConvertibleBond
Example52ConvertibleBond
ExampleAtnodeG,thebondholderoptimallychoosetoconvertsincewhatisobtainedunderconversion($1,568.31),ishigherthanthepayoffundertheassumptionofnoconversion($1,040.00)ThesameappliestonodeHOntheotherhand,atnodesIandJ,thevalueundertheassumptionofconversionislowerthanifthebondisnotconvertedtoequity–Therefore,bondholdersoptimallychoosenottoconvert,andthepayoffissimplythenominalvalueofthebond,plustheinterestpayments,thatis$1,040.00ConvertibleBond
ExampleAtnod53ConvertibleBond
ExampleWorkingourwaybackwardthetree,weobtainatnodeDthevalueoftheconvertiblebondasthediscountedexpectedvalue,usingrisk-neutralprobabilitiesofthepayoffsatnodesGandH?AtnodeF,thesameprincipleapplies,exceptthatitanberegardedasastandardbond?Wethereforeusetherateofreturnonanonconvertiblebondissuedbythesamecompany,15%ConvertibleBond
ExampleWorkin54ConvertibleBond
ExampleAtnodeE,thesituationismoreinterestingbecausetheconvertiblebondwillendupasastockincaseofanupmove(conversion),andasabondincaseofadownmove(noconversion)Asanapproximateruleofthumb,onemayuseaweightedaverageoftheriskfreeandriskyinterestrateinthecomputation,wheretheweightingisperformedaccordingtothe(risk-neutral)probabilityofanupversusadownmove?ThenthevalueiscomputedasConvertibleBond
ExampleAtnod55ConvertibleBond
ExampleNotethatatnodeD,callingorconvertingisnotrelevantbecauseitdoesnotchangethebondvaluesincethebondisalreadyessentiallyequityAtnodeB,itcanbeshownthattheissuerfindsitoptimaltocallthebondIfthebondisindeedcalledbytheissuer,bondholdersareleftwiththechoicebetweennotconvertingandgettingthecallprice($1,100),orconvertingandgetting$20x58.09=1,161.8$,whichiswhattheyoptimallychooseThisislessthan$1,191.13,thevalueoftheconvertiblebondifitwerenotcalled,andthisispreciselywhyitiscalledbytheissuerEventually,thevalueatnodeA,i.e.,thepresentfairvalueoftheconvertiblebond,iscomputedas$1,115.41ConvertibleBond
ExampleNotet56ConvertibleBonds
ConvertibleArbitrageConvertiblearbitragestrategiesattempttoexploitanomaliesinpricesofcorporatesecuritiesthatareconvertibleintocommonstocksRoughlyspeaking,iftheissuerdoeswell,theconvertiblebondbehaveslikeastock,iftheissuerdoespoorly,theconvertiblebondbehaveslikedistresseddebtConvertiblebondstendstobeunder-pricedbecauseofmarketsegmentation:investorsdiscountsecuritiesthatarelikelytochangetypesConvertiblearbitragehedgefundmanagerstypicallybuy(orsometimessell)thesesecuritiesandthenhedgepartoralloftheassociatedrisksbyshortingthestockConvertibleBonds
Convertible57ConvertibleBonds
MechanismInatypicalconvertiblebondarbitrageposition,thehedgefundisnotonlylongtheconvertiblebondposition,butalsoshortanappropriateamountoftheunderlyingcommonstockThenumberofsharesshortedbythehedgefundmanagerisdesignedtomatchoroffsetthesensitivityoftheconvertiblebondtocommonstockpricechanges–Asthestockpricedecreases,theamountlostonthelongconvertiblepositioniscounteredbytheamountgainedontheshortstockposition–Asthestockpriceincreases,theamountgainedonthelongconvertiblepositioniscounteredbytheamountlostontheshortstockpositionThisisknownasdeltahedgingOver-hedgingissometimesappropriatewhenthereisconcernaboutdefault,astheexcessshortpositionmaypartiallyhedgeagainstareductionincreditqualityConvertibleBonds
MechanismIn58FIXED-INCOMESECURITIESLecture9OptionsonBondsandBondswithEmbeddedOptionsFIXED-INCOMESECURITIES59固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件60固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件61ValueofThree-PeriodOption-FreeBond
C=9,F=100
ValueofThree-PeriodOption-F62CallableBondsandPutableBonds
BondwithEmbeddedOptionsCallablebonds–Issuermayrepurchaseatapre-specifiedcallprice–TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor–Ifitiseffectivelycalled,theinvestorwillhavetoinvestinanotherbondyieldingalowerrate–Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall–Therefore,aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption-freebondExamples–TheUKTreasurybondwithcoupon5.5%andmaturitydate09/10/2012canbecalledinfullorpartfrom09/10/2008onatapriceofpounds100–TheUSTreasurybondwithcoupon7.625%andmaturitydate02/15/2007canbecalledoncoupondatesonly,atapriceof$100,from02/15/2002on–SuchabondissaidtobediscretelycallableCallableBondsandPutableBon63CallableandPutableBonds
InstitutionalAspectsPutablebondholdermayretireatapre-specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo,hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption-freebondCallableandPutableBo64CallableandPutableBonds
Yield-to-WorstYield-to-callYear54.54%Year64.61%Year74.66%Year84.69%Year94.72%Yield-to-worstyear104.74%LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity,fromitsfirstcalldateon–Onecancomputeayield-to-callonallpossiblecalldates–Theyield-to-worstisthelowestoftheyield-to-maturityandallyields-to-callExample–10-yearbondbearinganinterestcouponof5%,discretelycallableafter5yearsandtradingat102–Thereare5possiblecalldatesbeforematurity–Yield-to-worstis4.54%CallableandPutableBonds65CallableBonds
ValuationinaBinomialModel
thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice,andthenrollingthecallablebondvaluetothecurrentperiod.Recursiveprocedure–Pricecash-flowtobediscountedonperiodn-1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn–AndsoonuntilwegetthepricePofthecallablebondCallableBonds
Valuationina66固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件67固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件68ValueofPutablebondValueofPutablebond69固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件70Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess.Thisvalueisknownasthetheoreticalvalue.
Thet-periodspotrateisequaltothegeometricaverageofthecurrentandexpectone-periodspotrates.
AlternativeBinomialValuationApproach
Analternativebutequivalent71consideragainthethree-period,9%option-freebondvaluedwithatwo-periodinterestratetree
consideragainthethree-perio72固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件73固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件74固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件75CallableandPutableBonds
MonteCarloApproachStep1:generatealargenumberofshort-terminterestratepathsStep2:alongeachinterestratepath,thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepathsCallableandPutableBonds
Mon76CallableandPutableBonds
MonteCarloApproach-ExamplePriceacallablebondwithannualcoupon4.57%,maturity10years,redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario?PriceofthebondisaverageoverallpathsP=1/6(100.43+100.55+99.9+99.76+99.68+100.55)=100.14?TheMonteCarlopricingmethodologycanalso
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 收納中的文化差異考察試題及答案
- 2024年檔案管理員考試難點(diǎn)解析試題及答案
- 2024年珠寶鑒定師案例研究試題及答案
- 2024年統(tǒng)計(jì)師考試培訓(xùn)班介紹試題及答案
- 測(cè)量光速的實(shí)驗(yàn)安排試題及答案
- 檔案管理發(fā)展趨勢(shì)試題及答案
- 多媒體在教育中的應(yīng)用試題及答案
- 提升效率的2024年統(tǒng)計(jì)師考試試題與答案
- 2024年綠色咖啡理念實(shí)施試題及答案
- 2024食品安全員考試重點(diǎn)復(fù)習(xí)試題與答案
- 醫(yī)院數(shù)據(jù)備份與恢復(fù)管理制度
- 信息檢索與利用課件 第8章 網(wǎng)絡(luò)信息檢索(下)
- DB43T 1606-2019 煙花爆竹涉藥機(jī)械設(shè)備安全論證規(guī)程
- 2024年安徽省初中(八年級(jí))學(xué)業(yè)水平考試地理試卷含答案
- 《油藏物理》西安石油大學(xué)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 江蘇省蘇州市姑蘇區(qū)草橋中學(xué)校2022-2023學(xué)年七下期中數(shù)學(xué)試題(原卷版)
- n3護(hù)士崗位競(jìng)聘范文
- 《公共管理學(xué)》第五章-政府作用課件
- 施工操作平臺(tái)安全專項(xiàng)施工方案
- DL-869火力發(fā)電廠焊接技術(shù)規(guī)程
- 中國(guó)普通食物營(yíng)養(yǎng)成分表(修正版)
評(píng)論
0/150
提交評(píng)論