版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Class1,PageClass1,PageClass1:Expectations,variances,andbasicsofestimationBasicsofmatrix(1)OrganizationalMatters⑴Courserequirements:Exercises:Therewillbeseven⑺exercises,thelastofwhichisoptional.Eachexercisewillbegradedonascaleof0-10.Inadditiontothegradedexercise,ananswerhandoutwillbegiventoyouinlabsections.Examination:Therewillbeonein-class,open-bookexamination.)Computersoftware:StataII.TeachingStrategiesEmphasisonconceptualunderstanding.Yes,wewilldealwithmathematicalformulas,actuallyalotofmathematicalformulas.But,Idonotwantyoutomemorizethem.WhatIhopeyouwilldo,istounderstandthelogicbehindthemathematicalformulas.Emphasisonhands-onresearchexperience.Yes,wewillusecomputersformostofourwork.ButIdonotwantyoutobecomeacomputerprogrammer.Manypeoplethinktheyknowstatisticsoncetheyknowhowtorunastatisticalpackage.Thisiswrong.Doingstatisticsismorethanrunningcomputerprograms.WhatIwillemphasizeistousecomputerprogramstoyouradvantageinresearchsettings.Computerprogramsarelikeautomobiles.Thebestautomobileisuselessunlesssomeonedrivesit.Youwillbethedriverofstatisticalcomputerprograms.Emphasisonstudent-instructorcommunication.Ihappentobelieveinstudents'judgmentabouttheirowneducation.EventhoughIwillbeultimatelyresponsibleiftheclassshouldnotgowell,Ihopethatyouwillfeelpartoftheclassandcontributetothequalityofthecourse.Ifyouhavequestions,donothesitatetoaskinclass.Ifyouhavesuggestions,pleasecomeforwardwiththem.Theclassisasmuchyoursasmine.Nowletusgettotherealbusiness.III(1)ExpectationandVarianceRandomVariable:Arandomvariableisavariablewhosenumericalvalueisdeterminedbytheoutcomeofarandomtrial.Twoproperties:randomandvariable.Arandomvariableassignsnumericvaluestouncertainoutcomes.Inacommonlanguage,"giveanumber".Forexample,incomecanbearandomvariable.Therearemanywaystodoit.Youcanusetheactualdollaramounts.Inthiscase,youhaveacontinuousrandomvariable.Oryoucanuselevelsofincome,suchashigh,median,andlow.Inthiscase,youhaveanordinalrandomvariable[1=high,2=median,3=low].Orifyouareinterestedintheissueofpoverty,youcanhaveadichotomousvariable:1=inpoverty,0=notinpoverty.
Insum,themappingofnumericvaluestooutcomesofeventsinthiswayistheessenceofarandomvariable.ProbabilityDistribution:TheprobabilitydistributionforadiscreterandomvariableXassociateswitheachofthedistinctoutcomesxi(i=1,2,…,k)aprobabilityP(X=xi).CumulativeProbabilityDistribution:ThecumulativeprobabilitydistributionforadiscreterandomvariableXprovidesthecumulativeprobabilitiesP(Xx)forallvaluesx.ExpectedValueofRandomVariable:TheexpectedvalueofadiscreterandomvariableXisdenotedbyE{X}anddefined:E{X}=P(xi)where:P(xi)denotes P(X=xi).ThenotationE{}(readexpectationof)iscalledtheexpectationoperator.Incommonlanguage,expectationisthemean.Butthedifferenceisthatexpectationisaconceptfortheentirepopulationthatyouneverobserve.Itistheresultoftheinfinitenumberofrepetitions.Forexample,ifyoutossacoin,theproportionoftailsshouldbe.5inthelimit.Ortheexpectationis.5.Mostofthetimesyoudonotgettheexact.5,butanumberclosetoit.ConditionalExpectationItisthemeanofavariableconditionalonthevalueofanotherrandomvariable.Notethenotation:E(Y|X).In1996,per-capitaaveragewagesinthreeChinesecitieswere(inRMB):Shanghai: 3,778Wuhan:where:P(xi)denotes P(X=xi).ThenotationE{}(readexpectationof)iscalledtheexpectationoperator.Incommonlanguage,expectationisthemean.Butthedifferenceisthatexpectationisaconceptfortheentirepopulationthatyouneverobserve.Itistheresultoftheinfinitenumberofrepetitions.Forexample,ifyoutossacoin,theproportionoftailsshouldbe.5inthelimit.Ortheexpectationis.5.Mostofthetimesyoudonotgettheexact.5,butanumberclosetoit.ConditionalExpectationItisthemeanofavariableconditionalonthevalueofanotherrandomvariable.Notethenotation:E(Y|X).In1996,per-capitaaveragewagesinthreeChinesecitieswere(inRMB):Shanghai: 3,778Wuhan: 1,709Xi'an: 1,155VarianceofRandomVariable:Theanddefined:varianceofadiscreterandomvariable XisdenotedbyV{X}V{X}=(xi-E{X})2P(xi)where:P(xi)denotesP(X=xi).ThenotationV{}(readoperator.varianceof")iscalledthvarianceSincethevarianceofarandomvariable Xisaweightedaverageofthesquareddeviations,(X-E{X})2,itmaybedefinedequivalentlyasanexpectedvalue: V{X}=E{(X-E{X})2}.Analgebraicallyidenticalexpressionis: V{X}=E{X2}-(E{X})2.StandardDeviationofRandomVariable:ThepositivesquarerootofthevarianceofXiscalledthestandarddeviationofXandisdenotedby{X}:{X}=Thenotation{}(readstandarddeviationof")iscalledandarddeviationoperator.StandardizedRandomVariables:IfXisarandomvariablewithexpectedvalueE{X}andstandarddeviation{X},then:Y=X E{X}{X}isknownasthestandardizedformofrandomvariableThenotation{}(readstandarddeviationof")iscalledandarddeviationoperator.StandardizedRandomVariables:IfXisarandomvariablewithexpectedvalueE{X}andstandarddeviation{X},then:Y=X E{X}{X}isknownasthestandardizedformofrandomvariableX.Covariance:Theanddefined:covarianceoftwodiscreterandomvariablesXandYisdenotedbyCov{X,Y}Cov{X,Y}=where:P(xi,yj)denotes)ThenotationofCov{,}(read"covarianceof")iscalledcovarianceoperator.WhenXandYareindependent,Cov{X,Y}=0.Cov{X,Y}=E{(X-E{X})(Y-E{Y})};Cov{X,Y}=E{XY}-E{X}E{Y}(Varianceisaspecialcaseofcovariance.)CoefficientofCorrelation:ThecoefficientofcorrelationoftworandomvariablesXandYisdenotedby{X,Y}(Greekrho)anddefined:X;{Y}isthestandarddeviationofY;Covisthewhere:{X}isthestandarddeviationX;{Y}isthestandarddeviationofY;CovisthecovarianceofXandY.SumandDifferenceofTwoRandomVariables:IfXandYaretworandomvariables,thentheexpectedvalueandthevarianceofX+Yareasfollows:ExpectedValue:E{X+Y}=E{X}+E{Y};Variance:V{X+Y}=V{X}+V{Y}+2Cov(X,Y).IfXandYaretworandomvariables,thentheexpectedvalueandthevarianceofareasfollows:ExpectedValue:E{X-Y}=E{X}-E{Y};Variance:V{X-Y}=V{X}+V{Y}-2Cov(X,Y).SumofMoreThanTwoIndependentRandomVariables:IfT=X1+X2+...+Xsisthesumofsindependentrandomvariables,thentheexpectedvalueandthevarianceofTareasfollows:ExpectedValue:Variance:III(2).PropertiesofExpectationsandCovariances:⑴PropertiesofExpectationsunderSimpleAlgebraicOperationsE(abX)abE(x)Thissaysthatalineartransformationisretainedaftertakinganexpectation.X*abXiscalledrescaling:aisthelocationparameter,bisthescaleparameter.Specialcasesare:Foraconstant:E(a)aForadifferentscale:E(bX)bE(X),e.g.,transformingthescaleofdollarsintothescaleofcents.PropertiesofVariancesunderSimpleAlgebraicOperations2V(abX)bV(X)Thissaystwothings:(1)Addingaconstanttoavariabledoesnotchangethevarianceofthevariable;reason:thedefinitionofvariancecontrolsforthemeanofthevariable[graphics].(2)Multiplyingaconstanttoavariablechangesthevarianceofthevariablebyafactoroftheconstantsquared;thisistoeasyprove,andIwillleaveittoyou.Thisisthereasonwhyweoftenusestandarddeviationinsteadofvariance2xxisofthesamescaleasx.PropertiesofCovarianceunderSimpleAlgebraicOperationsCov(a+bX,c+dY)=bdCov(X,Y).Again,onlyscalematters,locationdoesnot.PropertiesofCorrelationunderSimpleAlgebraicOperationsIwillleavethisaspartofyourfirstexercise:(abX,cdY)(X,Y)Thatis,neitherscalenorlocationaffectscorrelation.IV:Basicsofmatrix.DefinitionsMatricesToday,Iwouldliketointroducethebasicsofmatrixalgebra.Amatrixisarectangulararrayofelementsarrangedinrowsandcolumns:XiiXi2.…x〔mX21XnmIndex:rowindex,columnindex.Dimension:numberofrowsxnumberofcolumns(nxm)Elements:aredenotedinsmallletterswithsubscripts.Anexampleisthespreadsheetthatrecordsthegradesforyourhomeworkinthefollowingway:Name1st2nd6thA7109B658...Z...89……8Thisisamatrix.Notation:IwilluseCapitalLettersforMatrices.VectorsVectorsarespecialcasesofmatrices:Ifthedimensionofamatrixisnx1,itisacolumnvector:xix2x...xnIfthedimensionis1xm,itisarowvector:y'=|y〔yYm|Notation:smallunderlinedlettersforcolumnvectors(inlecturenotes)TransposeThetransposeofamatrixisanothermatrixwithpositionsofrowsandcolumnsbeingexchangedsymmetrically.Forexample:ifX11X12.…XimX(X(nm)X21X11XnmX11XnmX21.…Xn1X'(mn)X'(mn)x12xlmXxlmXnmItiseasytoseethatarowvectorandacolumnvectoraretransposesofeachother.2.MatrixAdditionandSubtractionAdditionsandsubtractionoftwomatricesarepossibleonlywhenthematriceshavethesamedimension.Inthiscase,additionorsubtractionofmatricesformsanothermatrixwhoseelementsconsistofthesum,ordifference,ofthecorrespondingelementsofthetwomatrices.X11X11 y11X21 y21X1m y1mXn1Xn1 yn1Xnm ymnExamples:12(22) 34(22)MatrixMultiplicationMultiplicationofascalarandamatrixMultiplyingascalartoamatrixisequivalenttomultiplyingthescalartoeachoftheelementsofthematrix.cxilCX12.…CX1mCX21cXcxnicxnmMultiplicationofaMatrixbyaMatrix(InnerProduct)TheinnerproductofmatrixX(axb)andmatrixY(cxdexistsifbisequaltoc.Theinnerproductisanewmatrixwiththedimension(axd).TheelementofthenewmatrixZis:cZijxikYkjk=1NotethatXYandYXareverydifferent.Veryoften,onlyoneoftheinnerproducts(XYandYX)exists.Example:A(2x2)B(2x1)BAdoesnotexist.ABhasthedimension2x12AB4Otherexamples:IfA(3x5),B(5x3),whatisthedimensionofAB?(3x3)IfA(3x5),B(5x3),whatisthedimensionofBA?(5x5)IfA(1x5),B(5x1),whatisthedimensionofAB?(1x1,scalar)IfA(3x5),B(5x1),whatisthedimensionofBA?(nonexistent)SpecialMatricesSquareMatrixAC(nn)SymmetricMatrixAspecialcaseofsquarematrix.F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工招標(biāo)文件范本
- 建筑工程施工質(zhì)量驗(yàn)收標(biāo)準(zhǔn)和規(guī)范
- 2024高中地理第四章自然環(huán)境對人類活動的影響3自然資源與人類活動學(xué)案湘教版必修1
- 2024高中生物第6章生態(tài)環(huán)境的保護(hù)第1節(jié)人口增長對生態(tài)環(huán)境的影響課堂演練含解析新人教版必修3
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題三現(xiàn)代中國的政治建設(shè)祖國統(tǒng)一與對外關(guān)系第8講現(xiàn)代中國的對外關(guān)系教學(xué)案+練習(xí)人民版
- 2024高考地理一輪復(fù)習(xí)第一部分自然地理-重在理解第一章行星地球第5講地球公轉(zhuǎn)及其地理意義學(xué)案新人教版
- (譯林版)二年級英語上冊期中檢測卷-附參考答案
- 變頻技術(shù)及應(yīng)用 課件 學(xué)習(xí)情境1、2 變頻器的基礎(chǔ)知識、認(rèn)識變頻器
- 部編版九年級上冊語文期中復(fù)習(xí):文學(xué)類文本閱讀-專項(xiàng)練習(xí)題(文本版-含答案)
- 農(nóng)業(yè)土地政策資料講解
- 床上用品材料采購合同
- 民航概論5套模擬試卷考試題帶答案
- 2024屆中國電建地產(chǎn)校園招聘網(wǎng)申平臺高頻500題難、易錯點(diǎn)模擬試題附帶答案詳解
- 2024包鋼(集團(tuán))公司招聘941人高頻考題難、易錯點(diǎn)模擬試題(共500題)附帶答案詳解
- 基于信創(chuàng)底座的智慧交通行業(yè)解決方案
- 2024年青海省中考生物地理合卷試題(含答案解析)
- COCA20000詞匯音標(biāo)版表格
- 滬教版七年級數(shù)學(xué)上冊專題06圖形的運(yùn)動(原卷版+解析)
- 大學(xué)美育-美育賞湖南智慧樹知到期末考試答案章節(jié)答案2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院
- 數(shù)據(jù)結(jié)構(gòu)期末考試題及答案
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數(shù)據(jù)標(biāo)準(zhǔn)
評論
0/150
提交評論