2022年湖北省恩施市巴東縣中考試題猜想數(shù)學試卷含解析_第1頁
2022年湖北省恩施市巴東縣中考試題猜想數(shù)學試卷含解析_第2頁
2022年湖北省恩施市巴東縣中考試題猜想數(shù)學試卷含解析_第3頁
2022年湖北省恩施市巴東縣中考試題猜想數(shù)學試卷含解析_第4頁
2022年湖北省恩施市巴東縣中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.這個數(shù)是()A.整數(shù) B.分數(shù) C.有理數(shù) D.無理數(shù)2.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<33.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-44.一次數(shù)學測試后,隨機抽取九年級某班5名學生的成績?nèi)缦拢?1,78,1,85,1.關于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是915.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.326.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:37.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.8.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.9.下列運算正確的是()A. B.C. D.10.計算(—2)2-3的值是()A、1B、2C、—1D、—2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.12.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.13.如圖,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分線與AC交于點D,與AB交于點E,連接BD.若AD=14,則BC的長為_____.14.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.15.分解因式:_________.16.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.17.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.三、解答題(共7小題,滿分69分)18.(10分)在矩形中,點在上,,⊥,垂足為.求證.若,且,求.19.(5分)如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.判斷直線DE與⊙O的位置關系,并說明理由.若⊙O的半徑R=5,tanA=,求線段CD的長.20.(8分)旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)(2)當每輛車的日租金為多少元時,每天的凈收入最多?21.(10分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.22.(10分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.23.(12分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.求BF的長.24.(14分)近幾年“霧霾”成為全社會關注的話題某校環(huán)保志愿者小組對該市2018年空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽查了50天的空氣質(zhì)量指數(shù)(AQI),得到以下數(shù)據(jù):43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)請你完成如下的統(tǒng)計表;AQI0~5051~100101~150151~200201~250300以上質(zhì)量等級A(優(yōu))B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(shù)(2)請你根據(jù)題中所給信息繪制該市2018年空氣質(zhì)量等級條形統(tǒng)計圖;(3)請你估計該市全年空氣質(zhì)量等級為“重度污染”和“嚴重污染”的天數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).

故選D.【點睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.2、B【解析】

設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據(jù)圖像的開口方向即可得出答案.【詳解】設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點,根據(jù)開口方向確定函數(shù)的增減性是解題關鍵.3、D【解析】

根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點睛】此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大?。?、D【解析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數(shù)②中位數(shù)③平均數(shù)④極差.5、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.6、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.7、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當?shù)妮o助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.8、C【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.9、D【解析】

由去括號法則:如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.10、A【解析】本題考查的是有理數(shù)的混合運算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數(shù)的加法、乘方法則。二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

過點作,交延長線于,連接,交于,根據(jù)折疊的性質(zhì)可得,,根據(jù)同角的余角相等可得,可得,由平行線的性質(zhì)可得,根據(jù)的三角函數(shù)值可求出、的長,根據(jù)為中點即可求出的長,根據(jù)余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為【點睛】本題考查了折疊的性質(zhì)、菱形的性質(zhì)及三角函數(shù)的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,熟練掌握三角函數(shù)的定義并熟記特殊角的三角函數(shù)值是解題關鍵.12、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質(zhì)及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設,則,,∴,∴,在中,,解得,,當時,,所以,∴,,,作,設,,,,,∴,,∴,則,故答案為【點睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關鍵.13、1【解析】解:∵DE是AB的垂直平分線,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案為1.點睛:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),30°角所對的直角邊等于斜邊的一半的性質(zhì),熟記性質(zhì)是解答本題的關鍵.14、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結果是x≥3,y=1.15、【解析】先提取公因式b,再利用完全平方公式進行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)16、6【解析】

根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關鍵在于利用等腰三角形的“三線合一17、32°【解析】

根據(jù)直徑所對的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,

∴∠ADB=90°,

∵∠ABD=58°,

∴∠A=32°,

∴∠BCD=32°,

故答案為32°.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)1【解析】分析:(1)利用“AAS”證△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,據(jù)此知AD=2DF,根據(jù)DF=AB可得答案.詳解:(1)證明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=1.點睛:本題主要考查矩形的性質(zhì),解題的關鍵是掌握矩形的性質(zhì)和全等三角形的判定與性質(zhì)及直角三角形的性質(zhì).19、(1)DE與⊙O相切;理由見解析;(2).【解析】

(1)連接OD,利用圓周角定理以及等腰三角形的性質(zhì)得出OD⊥DE,進而得出答案;(2)得出△BCD∽△ACB,進而利用相似三角形的性質(zhì)得出CD的長.【詳解】解:(1)直線DE與⊙O相切.理由如下:連接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直徑∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE與⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=∴BC=AB?tanA=10×,∴AC=,∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD∽△ACB∴∴CD=.【點睛】本題考查切線的判定、勾股定理及相似三角形的判定與性質(zhì),掌握相關性質(zhì)定理靈活應用是本題的解題關鍵.20、(1)每輛車的日租金至少應為25元;(2)當每輛車的日租金為175元時,每天的凈收入最多是5025元.【解析】試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費,由凈收入為正列出不等式求解即可;(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數(shù),∴每輛車的日租金至少應為25元;(2)設每輛車的凈收入為y元,當0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當x=100時,y1的最大值為50×100﹣1100=3900;當x>100時,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,當x=175時,y2的最大值為5025,5025>3900,故當每輛車的日租金為175元時,每天的凈收入最多是5025元.考點:二次函數(shù)的應用.21、﹣6+2【解析】分析:直接利用二次根式的性質(zhì)以及絕對值的性質(zhì)和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.22、(1);(2)和;(3)【解析】

(1)設,,再根據(jù)根與系數(shù)的關系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標,設出點Q坐標,利用平行四邊形的性質(zhì),分類討論點P坐標,利用全等的性質(zhì)得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標;(3)過點作DH⊥軸于點,由::,可得::.設,可得點坐標為,可得.設點坐標為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設,,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為.②當以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論