河北省大城縣重點中學2022年中考數學全真模擬試卷含解析_第1頁
河北省大城縣重點中學2022年中考數學全真模擬試卷含解析_第2頁
河北省大城縣重點中學2022年中考數學全真模擬試卷含解析_第3頁
河北省大城縣重點中學2022年中考數學全真模擬試卷含解析_第4頁
河北省大城縣重點中學2022年中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉180°,所得拋物線的解析式是().A. B.C. D.2.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.23.如圖,已知拋物線和直線.我們約定:當x任取一值時,x對應的函數值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當x>2時,M=y2;②當x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x="1".其中正確的有A.1個 B.2個 C.3個 D.4個4.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數為()A.80° B.70° C.60° D.50°5.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.6.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.147.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數量x(單位:本)之間的函數關系如圖所示,則下列結論錯誤的是()A.一次性購買數量不超過10本時,銷售價格為20元/本B.a=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元8.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.9.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數為()A.65° B.60°C.55° D.45°10.若二次函數的圖象經過點(﹣1,0),則方程的解為()A., B., C., D.,二、填空題(本大題共6個小題,每小題3分,共18分)11.中國人最先使用負數,魏晉時期的數學家劉徽在“正負術”的注文中指出,可將算籌(小棍形狀的記數工具)正放表示正數,斜放表示負數.如圖,根據劉徽的這種表示法,觀察圖①,可推算圖②中所得的數值為_____.12.當__________時,二次函數有最小值___________.13.分解因式:____________.14.每一層三角形的個數與層數的關系如圖所示,則第2019層的三角形個數為_____.15.一輛汽車在坡度為的斜坡上向上行駛130米,那么這輛汽車的高度上升了__________米.16.半徑是6cm的圓內接正三角形的邊長是_____cm.三、解答題(共8題,共72分)17.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).18.(8分)如圖矩形ABCD中AB=6,AD=4,點P為AB上一點,把矩形ABCD沿過P點的直線l折疊,使D點落在BC邊上的D′處,直線l與CD邊交于Q點.(1)在圖(1)中利用無刻度的直尺和圓規(guī)作出直線l.(保留作圖痕跡,不寫作法和理由)(2)若PD′⊥PD,①求線段AP的長度;②求sin∠QD′D.19.(8分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數點后一位,參考數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20.(8分)華聯(lián)超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設每雙降低x元(x為正整數),每天的銷售利潤為y元.求y與x的函數關系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?21.(8分)在學習了矩形這節(jié)內容之后,明明同學發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當的值是多少時,△PDE的周長最小?如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.22.(10分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.23.(12分)菏澤市牡丹區(qū)中學生運動會即將舉行,各個學校都在積極地做準備,某校為獎勵在運動會上取得好成績的學生,計劃購買甲、乙兩種獎品共100件,已知甲種獎品的單價是30元,乙種獎品的單價是20元.(1)若購買這批獎品共用2800元,求甲、乙兩種獎品各購買了多少件?(2)若購買這批獎品的總費用不超過2900元,則最多購買甲種獎品多少件?24.某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中選出一類最喜愛的電視節(jié)目,以下是根據調查結果繪制的不完整統(tǒng)計表:節(jié)目代號ABCDE節(jié)目類型新聞體育動畫娛樂戲曲喜愛人數1230m549請你根據以上的信息,回答下列問題:(1)被調查學生的總數為人,統(tǒng)計表中m的值為.扇形統(tǒng)計圖中n的值為;(2)被調查學生中,最喜愛電視節(jié)目的“眾數”;(3)該校共有2000名學生,根據調查結果,估計該校最喜愛新聞節(jié)目的學生人數.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點坐標為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點坐標為(0,3),

∵拋物線繞與y軸的交點旋轉180°,

∴所得拋物線的頂點坐標為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點睛】本題考查了二次函數圖象與幾何變換,利用頂點的變化確定函數解析式的變化可以使求解更簡便.2、C【解析】

直接利用有理數的除法運算法則計算得出答案.【詳解】解:(-18)÷9=-1.

故選:C.【點睛】此題主要考查了有理數的除法運算,正確掌握運算法則是解題關鍵.3、B【解析】試題分析:∵當y1=y2時,即時,解得:x=0或x=2,∴由函數圖象可以得出當x>2時,y2>y1;當0<x<2時,y1>y2;當x<0時,y2>y1.∴①錯誤.∵當x<0時,-直線的值都隨x的增大而增大,∴當x<0時,x值越大,M值越大.∴②正確.∵拋物線的最大值為4,∴M大于4的x值不存在.∴③正確;∵當0<x<2時,y1>y2,∴當M=2時,2x=2,x=1;∵當x>2時,y2>y1,∴當M=2時,,解得(舍去).∴使得M=2的x值是1或.∴④錯誤.綜上所述,正確的有②③2個.故選B.4、B【解析】

直接利用平行線的性質得出∠4的度數,再利用對頂角的性質得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質,正確得出∠4的度數是解題關鍵.5、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關鍵.6、C【解析】

根據三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.7、D【解析】

A、根據單價=總價÷數量,即可求出一次性購買數量不超過10本時,銷售單價,A選項正確;C、根據單價=總價÷數量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據總價=200+超過10本的那部分書的數量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【點睛】考查了一次函數的應用,根據一次函數圖象結合數量關系逐一分析四個選項的正誤是解題的關鍵.8、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.9、A【解析】

根據線段垂直平分線的性質得到AD=DC,根據等腰三角形的性質得到∠C=∠DAC,求得∠DAC=30°,根據三角形的內角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質,三角形的內角和,正確掌握線段垂直平分線的性質是解題關鍵.10、C【解析】

∵二次函數的圖象經過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:根據有理數的加法,可得圖②中表示(+2)+(﹣5)=﹣1,故答案為﹣1.考點:正數和負數12、15【解析】二次函數配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.13、【解析】試題分析:根據因式分解的方法,先提公因式,再根據平方差公式分解:.考點:因式分解14、2.【解析】

設第n層有an個三角形(n為正整數),根據前幾層三角形個數的變化,即可得出變化規(guī)律“an=2n﹣2”,再代入n=2029即可求出結論.【詳解】設第n層有an個三角形(n為正整數),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴當n=2029時,a2029=2×2029﹣2=2.故答案為2.【點睛】本題考查了規(guī)律型:圖形的變化類,根據圖形中三角形個數的變化找出變化規(guī)律“an=2n﹣2”是解題的關鍵.15、50.【解析】

根據坡度的定義可以求得AC、BC的比值,根據AC、BC的比值和AB的長度即可求得AC的值,即可解題.【詳解】解:如圖,米,設,則,則,解得,故答案為:50.【點睛】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數值的計算,屬于基礎題.16、6【解析】

根據題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質,熟練掌握等邊三角形的性質是解題的關鍵,根據圓的內接正三角形的特點,求出內心到每個頂點的距離,可求出內接正三角形的邊長.三、解答題(共8題,共72分)17、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.18、(1)見解析;(2)【解析】

(1)根據題意作出圖形即可;(2)由(1)知,PD=PD′,根據余角的性質得到∠ADP=∠BPD′,根據全等三角形的性質得到AD=PB=4,得到AP=2;根據勾股定理得到PD==2,根據三角函數的定義即可得到結論.【詳解】(1)連接PD,以P為圓心,PD為半徑畫弧交BC于D′,過P作DD′的垂線交CD于Q,則直線PQ即為所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP與△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,連接QD′則DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【點睛】本題考查了作圖-軸對稱變換,矩形的性質,折疊的性質,全等三角形的判定和性質,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.19、5.8【解析】

過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【點睛】本題考查了解直角三角形的應用,先將實際問題抽象為數學問題,然后利用勾股定理和銳角三角函數的定義進行計算.20、(1)y=﹣5x2+110x+1200;(2)售價定為189元,利潤最大1805元【解析】

利潤等于(售價﹣成本)×銷售量,根據題意列出表達式,借助二次函數的性質求最大值即可;【詳解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵拋物線開口向下,∴當x=11時,y有最大值1805,答:售價定為189元,利潤最大1805元;【點睛】本題考查實際應用中利潤的求法,二次函數的應用;能夠根據題意列出合理的表達式是解題的關鍵.21、(1)證明見解析(2)(3)【解析】

(1)根據題中“完美矩形”的定義設出AD與AB,根據AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質求出GH的長即可.【詳解】(1)在圖1中,設AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【點睛】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質,全等三角形的判定與性質,勾股定理,三角形中位線性質,平行線的判定與性質,熟練掌握相似三角形的性質是解本題的關鍵.22、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點代入拋物線,求出的值即可.先用待定系數法求出直線BE的解析式,進而求得直線AD的解析式,設則表示出,用配方法求出它的最大值,聯(lián)立方程求出點的坐標,最大值=,進而計算四邊形EAPD面積的最大值;分兩種情況進行討論即可.試題解析:(1)∵在拋物線上,∴解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論