2020高中數(shù)學(xué) 第一章 立體幾何初步 7.1 簡(jiǎn)單幾何體的側(cè)面積課后課時(shí)精練 2_第1頁(yè)
2020高中數(shù)學(xué) 第一章 立體幾何初步 7.1 簡(jiǎn)單幾何體的側(cè)面積課后課時(shí)精練 2_第2頁(yè)
2020高中數(shù)學(xué) 第一章 立體幾何初步 7.1 簡(jiǎn)單幾何體的側(cè)面積課后課時(shí)精練 2_第3頁(yè)
2020高中數(shù)學(xué) 第一章 立體幾何初步 7.1 簡(jiǎn)單幾何體的側(cè)面積課后課時(shí)精練 2_第4頁(yè)
2020高中數(shù)學(xué) 第一章 立體幾何初步 7.1 簡(jiǎn)單幾何體的側(cè)面積課后課時(shí)精練 2_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精PAGEPAGE5學(xué)必求其心得,業(yè)必貴于專精7.1簡(jiǎn)單幾何體的側(cè)面積時(shí)間:25分鐘1.若一個(gè)圓錐的軸截面是等邊三角形,其面積為eq\r(3),則這個(gè)圓錐的表面積是()A.3πB.3eq\r(3)πC.6πD.9π答案A解析根據(jù)軸截面面積是eq\r(3),可得圓錐的母線長(zhǎng)為2,底面半徑為1,所以S=πr2+πrl=π+2π=3π。2.將一個(gè)棱長(zhǎng)為a的正方體,切成27個(gè)全等的小正方體,則所有小正方體的表面積為()A.6a2B.12a2C.18答案C解析每個(gè)小正方體的棱長(zhǎng)為eq\f(a,3),表面積為6·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,3)))2=eq\f(6,9)a2=eq\f(2,3)a2?!?7個(gè)小正方體的表面積為27×eq\f(2,3)a2=18a2。3.如圖所示,側(cè)棱長(zhǎng)為1的正四棱錐,若底面周長(zhǎng)為4,則這個(gè)棱錐的側(cè)面積為()A.5B.eq\r(3)C.eq\f(\r(3)+1,2)D。eq\r(3)+1答案B解析作SE⊥BC于E。設(shè)底面邊長(zhǎng)為a,則由底面周長(zhǎng)為4,得a=1,SE=eq\r(1-\f(1,4))=eq\f(\r(3),2).∴S側(cè)=eq\f(1,2)×4×eq\f(\r(3),2)=eq\r(3)。4.若圓臺(tái)的高是3,一個(gè)底面半徑是另一個(gè)底面半徑的2倍,母線與下底面成45°角,則這個(gè)圓臺(tái)的側(cè)面積是()A.27πB.27eq\r(2)πC.9eq\r(2)πD.36eq\r(2)π答案B解析∵r′=3,r=6,l=3eq\r(2),∴S側(cè)=π(r′+r)l=π(3+6)×3eq\r(2)=27eq\r(2)π.5.已知長(zhǎng)方體的俯視圖是一個(gè)面積為1的正方形,左視圖是一個(gè)面積為eq\r(2)的矩形,則該長(zhǎng)方體的主視圖的面積等于()A.eq\f(\r(3),2)B.1C。eq\f(\r(2)+1,2)D。eq\r(2)答案D解析由于該長(zhǎng)方體的俯視圖是面積為1的正方形,左視圖是一個(gè)面積為eq\r(2)的矩形,因此該幾何體的主視圖是一個(gè)長(zhǎng)為eq\r(2),寬為1的矩形,其面積為eq\r(2).6.如圖為一個(gè)幾何體的三視圖,其中俯視圖為正三角形,則該幾何體的表面積為()A.14eq\r(3) B.6+eq\r(3)C.12+2eq\r(3) D.16+2eq\r(3)答案C解析根據(jù)三視圖可知該幾何體為正三棱柱,其中側(cè)棱長(zhǎng)為2,底面三角形邊上的高為eq\r(3),即底面三角形的邊長(zhǎng)為2,故其表面積S=3×2×2+eq\f(\r(3),4)×22×2=12+2eq\r(3)。7.已知正三棱錐的高為1,底面邊長(zhǎng)為2eq\r(6),則該三棱錐的表面積為_(kāi)_______.答案9eq\r(2)+6eq\r(3)解析易知底面正三角形的中心到一邊的距離為eq\f(1,3)×eq\f(\r(3),2)×2eq\r(6)=eq\r(2),則正三棱錐側(cè)面的斜高為eq\r(12+\r(2)2)=eq\r(3),所以S側(cè)=3×eq\f(1,2)×2eq\r(6)×eq\r(3)=9eq\r(2),所以S表=S側(cè)+S底=9eq\r(2)+eq\f(\r(3),4)×(2eq\r(6))2=9eq\r(2)+6eq\r(3).8.已知某幾何體的三視圖如圖所示,則該幾何體的表面積等于________.答案64+32eq\r(2)解析由三視圖可知該幾何體是由一個(gè)直三棱柱截去一個(gè)三棱錐得到的,如圖所示,SA=AB=BC=4,則SB=4eq\r(2),AC=4eq\r(2),則該幾何體的表面積S=4×8+eq\f(1,2)×4eq\r(2)×(8+4)+eq\f(1,2)×4×(8+4)+eq\f(1,2)×4×4+eq\f(1,2)×4×4eq\r(2)=64+32eq\r(2).9.已知棱長(zhǎng)均為5的四棱錐S-ABCD(如圖),求它的側(cè)面積與表面積.解因?yàn)樗睦忮FS-ABCD的各棱長(zhǎng)均為5,所以各個(gè)側(cè)面都是全等的正三角形,取BC的中點(diǎn)E,連接SE,則SE⊥BC,∴S側(cè)=4S△SBC=4×eq\f(1,2)BC·SE=2×5×eq\r(52-\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,2)))2)=25eq\r(3),S表=S側(cè)+S底=25eq\r(3)+25=25(eq\r(3)+1).10.一圓臺(tái)形花盆,盆口直徑20cm,盆底直徑15cm,底部滲水圓孔直徑1。5cm,盆壁長(zhǎng)15cm。為美化外表而涂油漆,若每平方米用100毫升油漆,則涂100個(gè)這樣的花盆要多少油漆?(結(jié)果精確到1毫升)解每個(gè)花盆需要涂油漆的面積為S=π×eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(\f(15,2)))2+\f(15,2)×15+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論