版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.2.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④3.已知向量,若,則實數(shù)的值為()A. B. C. D.4.設全集,集合,,則()A. B. C. D.5.設,點,,,,設對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.6.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.147.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.8.設i為虛數(shù)單位,若復數(shù),則復數(shù)z等于()A. B. C. D.09.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下20組隨機數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.10.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.11.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.12.若,,,則下列結(jié)論正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,常數(shù)項為________.(用數(shù)字作答)14.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點為,且,則雙曲線的離心率為__________.15.已知,滿足約束條件則的最大值為__________.16.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.18.(12分)已知變換將平面上的點,分別變換為點,.設變換對應的矩陣為.(1)求矩陣;(2)求矩陣的特征值.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼谋兜玫角€(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.20.(12分)已知各項均不相等的等差數(shù)列的前項和為,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?22.(10分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標準方程,考查運算求解能力.2、B【解析】
由命題的否定,復合命題的真假,充分必要條件,四種命題的關(guān)系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).3、D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數(shù)量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通??傻玫絻蓚€向量的數(shù)量積為0,繼而結(jié)合條件進行化簡、整理.4、B【解析】
可解出集合,然后進行補集、交集的運算即可.【詳解】,,則,因此,.故選:B.【點睛】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎(chǔ)題.5、A【解析】
先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.6、A【解析】
設等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設等差數(shù)列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.7、B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數(shù)的代數(shù)運算,屬于基礎(chǔ)題.9、A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當1,2同時出現(xiàn)時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數(shù)的應用和古典概型概率的計算,屬于基礎(chǔ)題.10、A【解析】
首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.11、C【解析】
,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.12、D【解析】
根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數(shù)項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.14、【解析】
先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內(nèi)的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.15、1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標函數(shù)的解析式,易可得到目標函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.16、【解析】分析:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,
∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學生的計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設,利用求二階導數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設,,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當即時,,不符合;當即時,,符合當即時,根據(jù)零點存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實數(shù)的最小值為【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查利用導數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于難題.18、(1)(2)1或6【解析】
(1)設,根據(jù)變換可得關(guān)于的方程,解方程即可得到答案;(2)求出特征多項式,再解方程,即可得答案;【詳解】(1)設,則,,即,解得,則.(2)設矩陣的特征多項式為,可得,令,可得或.【點睛】本題考查矩陣的求解、矩陣的特征值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力.19、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以得,進而可化簡得出曲線的直角坐標方程;(2)根據(jù)變換得出的普通方程為,可設點的坐標為,利用點到直線的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【詳解】(1)由(為參數(shù)),得,化簡得,故直線的普通方程為.由,得,又,,.所以的直角坐標方程為;(2)由(1)得曲線的直角坐標方程為,向下平移個單位得到,縱坐標不變,橫坐標變?yōu)樵瓉淼谋兜玫角€的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點到直線的距離為,當時,最小為.【點睛】本題考查曲線的參數(shù)方程、極坐標方程與普通方程的相互轉(zhuǎn)化,同時也考查了利用橢圓的參數(shù)方程解決點到直線的距離最值的求解,考查計算能力,屬于中等題.20、(1);(2).【解析】試題分析:(1)設公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項公式;(2)由(1)可得,即可利用裂項相消求解數(shù)列的和.試題解析:(1)設公差為.由已知得,解得或(舍去),所以,故.(2),考點:等差數(shù)列的通項公式;數(shù)列的求和.21、(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit4 What can you do B Read and write(說課稿)-2024-2025學年人教PEP版英語五年級上冊
- 2025年學生會外聯(lián)部部長工作總結(jié)及工作計劃
- 人教版七年級歷史與社會上冊 3.3《傍水而居》之耕海牧漁說課稿
- 2025幼兒園中班班主任工作計劃秋季
- 2025年測繪院個人工作計劃
- Unit2 Special Days (Lesson 2)(說課稿)-2023-2024學年人教新起點版英語五年級下冊
- 2025幼兒園教育教學工作總結(jié)幼兒園園長計劃
- 2025年度一年級語文教研組工作計劃范文
- 2025年考研英語復習計劃表
- SDH光纖傳輸系統(tǒng)行業(yè)相關(guān)投資計劃提議
- 0-3歲嬰幼兒心理發(fā)展知到智慧樹期末考試答案題庫2024年秋杭州師范大學
- GB/T 16758-2008排風罩的分類及技術(shù)條件
- 銀行分管財務副行長個人述職報告4篇全文
- 學校信息中心述職報告(共3篇)
- 小說與散文的區(qū)別課件
- 景德鎮(zhèn)綠地昌南里項目視頻討論會ua根據(jù)0108意見修改
- 豆腐的制作工藝及配方
- DB-T 29-202-2022 天津市建筑基坑工程技術(shù)規(guī)程
- 福建省社會體育指導員信息表
- DB51∕T 5060-2013 四川省預拌砂漿生產(chǎn)與應用技術(shù)規(guī)程
- 珠心算習題匯總(可以打印版A4)
評論
0/150
提交評論