![2023年山東省威海市文登區(qū)實驗中學中考五模數(shù)學試題含答案解析_第1頁](http://file4.renrendoc.com/view/ce6352fdaa74f8b92371a89c1595c2fe/ce6352fdaa74f8b92371a89c1595c2fe1.gif)
![2023年山東省威海市文登區(qū)實驗中學中考五模數(shù)學試題含答案解析_第2頁](http://file4.renrendoc.com/view/ce6352fdaa74f8b92371a89c1595c2fe/ce6352fdaa74f8b92371a89c1595c2fe2.gif)
![2023年山東省威海市文登區(qū)實驗中學中考五模數(shù)學試題含答案解析_第3頁](http://file4.renrendoc.com/view/ce6352fdaa74f8b92371a89c1595c2fe/ce6352fdaa74f8b92371a89c1595c2fe3.gif)
![2023年山東省威海市文登區(qū)實驗中學中考五模數(shù)學試題含答案解析_第4頁](http://file4.renrendoc.com/view/ce6352fdaa74f8b92371a89c1595c2fe/ce6352fdaa74f8b92371a89c1595c2fe4.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年山東省威海市文登區(qū)實驗中學中考五模數(shù)學測試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD的邊長為4,點M是CD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結(jié)束.設(shè)點E的運動時間為x,△EFG的面積為y,下列能表示y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.2.如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)3.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.24.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.5.若一組數(shù)據(jù)2,3,4,5,x的平均數(shù)與中位數(shù)相等,則實數(shù)x的值不可能是()A.6 B.3.5 C.2.5 D.16.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根7.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.228.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設(shè)動車速度為每小時x千米,則可列方程為()A. B.C. D.9.如圖,點A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數(shù)是()A.135° B.115° C.65° D.50°10.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..12.月球的半徑約為1738000米,1738000這個數(shù)用科學記數(shù)法表示為___________.13.被歷代數(shù)學家尊為“算經(jīng)之首”的九章算術(shù)是中國古代算法的扛鼎之作九章算術(shù)中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕一雀一燕交而處,衡適平并燕、雀重一斤問燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕將一只雀、一只燕交換位置而放,重量相等只雀、6只燕重量為1斤問雀、燕毎只各重多少斤?”設(shè)每只雀重x斤,每只燕重y斤,可列方程組為______.14.函數(shù)y=中自變量x的取值范圍是___________.15.某次數(shù)學測試,某班一個學習小組的六位同學的成績?nèi)缦拢?4、75、75、92、86、99,則這六位同學成績的中位數(shù)是_____.16.如圖,二次函數(shù)y=a(x﹣2)2+k(a>0)的圖象過原點,與x軸正半軸交于點A,矩形OABC的頂點C的坐標為(0,﹣2),點P為x軸上任意一點,連結(jié)PB、PC.則△PBC的面積為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.求二次函數(shù)y=ax2+2x+c的表達式;連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.18.(8分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.19.(8分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.20.(8分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.21.(8分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關(guān)系;(2)求∠ABD的度數(shù).22.(10分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運,其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應(yīng)各裝的噸數(shù)(設(shè)裝運貨物時無任何空隙).23.(12分)某市正在舉行文化藝術(shù)節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術(shù)節(jié)紀念品.若購進甲種紀念品4件,乙種紀念品3件,需要550元,若購進甲種紀念品5件,乙種紀念品6件,需要800元.(1)求購進甲、乙兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共80件,其中甲種紀念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購買這80件紀念品的資金不能超過7100元,那么該商店共有幾種進貨方案7(3)若銷售每件甲種紀含晶可獲利潤20元,每件乙種紀念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?24.某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、A【答案解析】
當點F在MD上運動時,0≤x<2;當點F在DA上運動時,2<x≤4.再按相關(guān)圖形面積公式列出表達式即可.【題目詳解】解:當點F在MD上運動時,0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當點F在DA上運動時,2<x≤4,則:y=,綜上,只有A選項圖形符合題意,故選擇A.【答案點睛】本題考查了動點問題的函數(shù)圖像,抓住動點運動的特點是解題關(guān)鍵.2、B【答案解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標為(1.5,),∴B3的坐標為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉(zhuǎn)6次,圖形向右平移2”是解題的關(guān)鍵.3、D【答案解析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【題目詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【答案點睛】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.4、B【答案解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【題目詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結(jié)果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結(jié)果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【答案點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.5、C【答案解析】
因為中位數(shù)的值與大小排列順序有關(guān),而此題中x的大小位置未定,故應(yīng)該分類討論x所處的所有位置情況:從小到大(或從大到?。┡帕性谥虚g;結(jié)尾;開始的位置.【題目詳解】(1)將這組數(shù)據(jù)從小到大的順序排列為2,3,4,5,x,
處于中間位置的數(shù)是4,
∴中位數(shù)是4,
平均數(shù)為(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列順序;
(2)將這組數(shù)據(jù)從小到大的順序排列后2,3,4,x,5,
中位數(shù)是4,
此時平均數(shù)是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列順序;
(3)將這組數(shù)據(jù)從小到大的順序排列后2,3,x,4,5,
中位數(shù)是x,
平均數(shù)(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列順序;
(4)將這組數(shù)據(jù)從小到大的順序排列后2,x,3,4,5,
中位數(shù)是3,
平均數(shù)(2+3+4+5+x)÷5=3,
解得x=1,不符合排列順序;
(5)將這組數(shù)據(jù)從小到大的順序排列后x,2,3,4,5,
中位數(shù)是3,
平均數(shù)(2+3+4+5+x)÷5=3,
解得x=1,符合排列順序;
∴x的值為6、3.5或1.
故選C.【答案點睛】考查了確定一組數(shù)據(jù)的中位數(shù),涉及到分類討論思想,較難,要明確中位數(shù)的值與大小排列順序有關(guān),一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).6、D【答案解析】
解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.7、B【答案解析】
直接利用平行四邊形的性質(zhì)得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【題目詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【答案點睛】平行四邊形的性質(zhì)掌握要熟練,找到等值代換即可求解.8、D【答案解析】解:設(shè)動車速度為每小時x千米,則可列方程為:﹣=.故選D.9、B【答案解析】
由OA=OB得∠OAB=∠OBA=25°,根據(jù)三角形內(nèi)角和定理計算出∠AOB=130°,則根據(jù)圓周角定理得∠P=
∠AOB,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求解.【題目詳解】解:在圓上取點
P
,連接
PA
、
PB.∵OA=OB
,∴∠OAB=∠OBA=25°
,∴∠AOB=180°?2×25°=130°
,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【答案點睛】本題考查的是圓,熟練掌握圓周角定理是解題的關(guān)鍵.10、A【答案解析】測試卷解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個,∴主視圖不可能是.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、D【答案解析】
利用△DAO與△DEA相似,對應(yīng)邊成比例即可求解.【題目詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.12、1.738×1【答案解析】
解:將1738000用科學記數(shù)法表示為1.738×1.故答案為1.738×1.【答案點睛】本題考查科學記數(shù)法—表示較大的數(shù),掌握科學計數(shù)法的計數(shù)形式,難度不大.13、【答案解析】
設(shè)雀、燕每1只各重x斤、y斤,根據(jù)等量關(guān)系:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.【題目詳解】設(shè)雀、燕每1只各重x斤、y斤,根據(jù)題意,得整理,得故答案為【答案點睛】考查二元一次方程組得應(yīng)用,解題的關(guān)鍵是分析題意,找出題中的等量關(guān)系.14、x≥﹣且x≠1【答案解析】
測試卷解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.15、85【答案解析】
根據(jù)中位數(shù)求法,將學生成績從小到大排列,取中間兩數(shù)的平均數(shù)即可解題.【題目詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數(shù)為中間兩數(shù)84和86的平均數(shù),∴這六位同學成績的中位數(shù)是85.【答案點睛】本題考查了中位數(shù)的求法,屬于簡單題,熟悉中位數(shù)的概念是解題關(guān)鍵.16、4【答案解析】
根據(jù)二次函數(shù)的對稱性求出點A的坐標,從而得出BC的長度,根據(jù)點C的坐標得出三角形的高線,從而得出答案.【題目詳解】∵二次函數(shù)的對稱軸為直線x=2,∴點A的坐標為(4,0),∵點C的坐標為(0,-2),∴點B的坐標為(4,-2),∴BC=4,則.【答案點睛】本題主要考查的是二次函數(shù)的對稱性,屬于基礎(chǔ)題型.理解二次函數(shù)的軸對稱性是解決這個問題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3(2)(,)(3)當點P的坐標為(,)時,四邊形ACPB的最大面積值為【答案解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)菱形的對角線互相垂直且平分,可得P點的縱坐標,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點坐標;(3)根據(jù)平行于y軸的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.【題目詳解】(1)將點B和點C的坐標代入函數(shù)解析式,得解得二次函數(shù)的解析式為y=﹣x2+2x+3;(2)若四邊形POP′C為菱形,則點P在線段CO的垂直平分線上,如圖1,連接PP′,則PE⊥CO,垂足為E,∵C(0,3),∴∴點P的縱坐標,當時,即解得(不合題意,舍),∴點P的坐標為(3)如圖2,P在拋物線上,設(shè)P(m,﹣m2+2m+3),設(shè)直線BC的解析式為y=kx+b,將點B和點C的坐標代入函數(shù)解析式,得解得直線BC的解析為y=﹣x+3,設(shè)點Q的坐標為(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,S四邊形ABPC=S△ABC+S△PCQ+S△PBQ當m=時,四邊形ABPC的面積最大.當m=時,,即P點的坐標為當點P的坐標為時,四邊形ACPB的最大面積值為.【答案點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用菱形的性質(zhì)得出P點的縱坐標,又利用了自變量與函數(shù)值的對應(yīng)關(guān)系;解(3)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì).18、(1)詳見解析;(2)①67.5°;②90°.【答案解析】
(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【題目詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【答案點睛】本題考查菱形的判定與性質(zhì)、切線的性質(zhì)、正方形的判定,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用菱形的性質(zhì)和正方形的性質(zhì)解答.19、(1)見解析;(2)BG=BC+CG=1.【答案解析】
(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得AE:AB=DF:DE,根據(jù)有兩邊對應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)相似三角形的預備定理得到△EDF∽△GCF,再根據(jù)相似的性質(zhì)即可求得CG的長,那么BG的長也就不難得到.【題目詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長為4,∴ED=2,CG=6,∴BG=BC+CG=1.【答案點睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.20、(1)∠EPF=120°;(2)AE+AF=6.【答案解析】測試卷分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結(jié)論;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.測試卷解析:(1)如圖1,過點P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,
∵四邊形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP?cos30°=3,同理AN=3,
∴AE+AF=(AM-EM)+(AN+NF)=6.【答案點睛】運用了菱形的性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),最值問題,等腰三角形的性質(zhì),作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.21、(1)AD2=AC?CD.(2)36°.【答案解析】測試卷分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設(shè)∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.測試卷解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設(shè)∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質(zhì).22、這艘船裝甲貨物80噸,裝乙貨物180噸.【答案解析】
根據(jù)題意先列二元一次方程,再解方程即可.【題目詳解】解:設(shè)這艘船裝甲貨物x噸,裝乙貨物y噸,根據(jù)題意,得.解得.答:這艘船裝甲貨物80噸,裝乙貨物180噸.【答案點睛】此題重點考查學生對二元一次方程的應(yīng)用能力,熟練掌握二元一次方程的解法是解題的關(guān)鍵.23、(1)購進甲種紀念品每件需100元,購進乙種紀念品每件需50
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲品牌加盟合同范本
- 北京的租房合同范本
- 設(shè)備購買及安裝合同
- 信息咨詢購銷合同范本
- 產(chǎn)品委托開發(fā)某某用合同
- 軟件項目開發(fā)戰(zhàn)略合作協(xié)議書范本
- 企業(yè)戰(zhàn)略分析與決策制定作業(yè)指導書
- 股權(quán)轉(zhuǎn)讓居間合同模板
- 美發(fā)店裝修施工合同協(xié)議書
- 大型商場租賃合同
- 北京市房山區(qū)2024-2025學年七年級上學期期末英語試題(含答案)
- 安全生產(chǎn)事故調(diào)查與案例分析(第3版)課件 呂淑然 第5、6章 事故案例評析、相關(guān)法律法規(guī)
- 2025年南陽科技職業(yè)學院高職單招數(shù)學歷年(2016-2024)頻考點試題含答案解析
- 加油站復工復產(chǎn)方案
- 2025-2030年中國增韌劑(MBS高膠粉)行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025年高考物理復習新題速遞之萬有引力與宇宙航行(2024年9月)
- 2025年首都機場集團公司招聘筆試參考題庫含答案解析
- 2025云南省貴金屬新材料控股集團限公司面向高校畢業(yè)生專項招聘144人高頻重點提升(共500題)附帶答案詳解
- 蘇州市區(qū)2024-2025學年五年級上學期數(shù)學期末試題一(有答案)
- 暑期預習高一生物必修二知識點
- (高清版)DB43∕T 1147-2015 太陽能果蔬烘干機
評論
0/150
提交評論