版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023屆湖南省永州市藍山縣中考數(shù)學最后沖刺模擬測試卷注意事項1.考生要認真填寫考場號和座位序號。2.測試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算結果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)32.每個人都應懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關于用水量的統(tǒng)計量不會發(fā)生改變的是()用水量x(噸)34567頻數(shù)1254﹣xxA.平均數(shù)、中位數(shù)B.眾數(shù)、中位數(shù)C.平均數(shù)、方差D.眾數(shù)、方差3.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.4.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④5.如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.6.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.7.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a78.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF9.小亮家1月至10月的用電量統(tǒng)計如圖所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.30和20B.30和25C.30和22.5D.30和17.510.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若關于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.12.比較大?。?_________(填<,>或=).13.不等式組的最小整數(shù)解是_____.14.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.15.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.16.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點A落到邊BC上的點A′處,折痕分別交邊AB、AC于點E,點F,如果A′F∥AB,那么BE=_____.三、解答題(共8題,共72分)17.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.18.(8分)如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.(1)求該拋物線的解析式;(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.19.(8分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.20.(8分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?1.(8分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).22.(10分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.23.(12分)隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學生,最喜歡用電話溝通的所對應扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調查結果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.24.解方程組
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、C【答案解析】
分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則逐一計算可得.【題目詳解】A、a2?a3=a5,此選項不符合題意;
B、a12÷a2=a10,此選項不符合題意;
C、(a2)3=a6,此選項符合題意;
D、(-a2)3=-a6,此選項不符合題意;
故選C.【答案點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則.2、B【答案解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為4,即可得知頻數(shù)之和,結合前兩組的頻數(shù)知第6、7個數(shù)據(jù)的平均數(shù),可得答案.【題目詳解】∵6噸和7噸的頻數(shù)之和為4-x+x=4,∴頻數(shù)之和為1+2+5+4=12,則這組數(shù)據(jù)的中位數(shù)為第6、7個數(shù)據(jù)的平均數(shù),即5+52∴對于不同的正整數(shù)x,中位數(shù)不會發(fā)生改變,∵后兩組頻數(shù)和等于4,小于5,∴對于不同的正整數(shù)x,眾數(shù)不會發(fā)生改變,眾數(shù)依然是5噸.故選B.【答案點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)的定義和計算方法是解題的關鍵.3、B【答案解析】
根據(jù)DE∥BC得到△ADE∽△ABC,根據(jù)相似三角形的性質解答.【題目詳解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故選:B.【答案點睛】本題考查了相似三角形的判定和性質,掌握相似三角形的對應邊的比等于相似比是解題的關鍵.4、B【答案解析】
根據(jù)拋物線圖象性質確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關系,代入②,不等式kx≤ax2+bx的解集可以轉化為函數(shù)圖象的高低關系.【題目詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側,則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【答案點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.5、B【答案解析】
以OM為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【題目詳解】如圖所示:MK=.故選:B.【答案點睛】考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.6、A【答案解析】測試卷分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.7、D【答案解析】
直接利用完全平方公式以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【題目詳解】A.
(a+b)2=a2+b2+2ab,故此選項錯誤;B.
3a+4a=7a,故此選項錯誤;C.
(ab)3=a3b3,故此選項錯誤;D.
a2a5=a7,正確。故選:D.【答案點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數(shù)冪的乘法,完全平方公式,解題的關鍵是掌握它們的概念進行求解.8、C【答案解析】
根據(jù)全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據(jù)三角形外角的性質,可得答案.【題目詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【答案點睛】.本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.9、C【答案解析】
將折線統(tǒng)計圖中的數(shù)據(jù)從小到大重新排列后,根據(jù)中位數(shù)和眾數(shù)的定義求解可得.【題目詳解】將這10個數(shù)據(jù)從小到大重新排列為:10、15、15、20、20、25、25、30、30、30,所以該組數(shù)據(jù)的眾數(shù)為30、中位數(shù)為20+252故選:C.【答案點睛】此題考查了眾數(shù)與中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.10、A【答案解析】
根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對邊除以斜邊,即可得出答案.【題目詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【答案點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題的關鍵是熟練的掌握銳角三角函數(shù)的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣2≤a<﹣1.【答案解析】
先確定不等式組的整數(shù)解,再求出a的范圍即可.【題目詳解】∵關于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【答案點睛】本題考查了一元一次不等式組的整數(shù)解的應用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關鍵.12、<【答案解析】【分析】根據(jù)實數(shù)大小比較的方法進行比較即可得答案.【題目詳解】∵32=9,9<10,∴3<,故答案為:<.【答案點睛】本題考查了實數(shù)大小的比較,熟練掌握實數(shù)大小比較的方法是解題的關鍵.13、-1【答案解析】分析:先求出每個不等式的解集,再求出不等式組的解集,即可得出答案.詳解:.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式組的解集為-3<x≤1,∴不等式組的最小整數(shù)解是-1,故答案為:-1.點睛:本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集得出不等式組的解集是解此題的關鍵.14、32°【答案解析】
根據(jù)直徑所對的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【題目詳解】∵AB是⊙O的直徑,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案為32°.15、1【答案解析】
根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結果.【題目詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【答案點睛】本題考查相似三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.16、【答案解析】
設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進而得到BE=.【題目詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【答案點睛】本題主要考查了折疊問題以及相似三角形的判定與性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.三、解答題(共8題,共72分)17、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【答案解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【題目詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【答案點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質.等邊三角形的性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考常考題型.18、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P點坐標為(﹣1,2).【答案解析】分析:(1)、根據(jù)題意得出點A和點B的坐標,然后利用待定系數(shù)法求出二次函數(shù)的解析式;(2)、根據(jù)函數(shù)圖像得出不等式的解集;(3)、作PE⊥x軸于點E,交AB于點D,根據(jù)題意得出∠PDQ=∠ADE=45°,PD==1,然后設點P(x,﹣x2﹣x+2),則點D(x,x+2),根據(jù)PD的長度得出x的值,從而得出點P的坐標.詳解:(1)當y=0時,x+2=0,解得x=﹣2,當x=0時,y=0+2=2,則點A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分別代入y=ax2+bx+c得,解得.∴該拋物線的解析式為y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,則不等式ax2+(b﹣1)x+c>2的解集為﹣2<x<0;(3)如圖,作PE⊥x軸于點E,交AB于點D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,設點P(x,﹣x2﹣x+2),則點D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,則﹣x2﹣x+2=2,∴P點坐標為(﹣1,2).點睛:本題主要考查的是二次函數(shù)的性質以及直角三角形的性質,屬于基礎題型.利用待定系數(shù)法求出函數(shù)解析式是解決這個問題的關鍵.19、(1)直線的解析式為:.(2)平移的時間為5秒.【答案解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【題目詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【答案點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.20、(1)證明見解析;(2)110°.【答案解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.21、100米.【答案解析】【分析】如圖,作PC⊥AB于C,構造出Rt△PAC與Rt△PBC,求出AB的長度,利用特殊角的三角函數(shù)值進行求解即可得.【題目詳解】如圖,過P點作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國蓖麻油行業(yè)消費形勢與競爭策略分析研究報告(2024-2030版)
- 中國肝纖維化中成藥行業(yè)發(fā)展動態(tài)及應用趨勢預測研究報告(2024-2030版)
- 中國聚丙烯無規(guī)共聚物市場發(fā)展態(tài)勢與運營效益分析研究報告(2024-2030版)
- 中國紡織洗滌行業(yè)消費狀況及競爭格局分析研究報告(2024-2030版)
- 中國立式裝袋機行業(yè)競爭格局及未來前景預測研究報告(2024-2030版)
- 中國硅片設備行業(yè)發(fā)展趨勢及投資方向研究研究報告(2024-2030版)
- 2024年中國外循環(huán)蒸發(fā)器市場調查研究報告
- 中國玻璃屋頂產(chǎn)銷前景調研與供需規(guī)模分析研究報告(2024-2030版)
- 高校園區(qū)建網(wǎng)課程設計
- 閥腔課程設計rar圖
- 困境兒童(含孤兒事實無人撫養(yǎng)兒童監(jiān)護缺失兒童)風險評估表
- 腹部血管疾病的超聲診斷課件整理
- 《客源國概論》期末考試題
- 公司吸煙管理規(guī)定范文
- 《江蘇省建筑業(yè)10項新技術(2021)》
- 建立高效護理團隊課件
- DBJ51 014-2021 四川省建筑地基基礎檢測技術規(guī)程
- 飼料粉塵防爆安全檢查表
- 河北省地圖介紹模板
- 二手車拍賣成交確認書范本簡約版
- 教師資格的定期注冊申請表
評論
0/150
提交評論